BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22098908)

  • 21. Polymethylmethacrylate-based bone cement modified with hydroxyapatite.
    Vallo CI; Montemartini PE; Fanovich MA; Porto López JM; Cuadrado TR
    J Biomed Mater Res; 1999; 48(2):150-8. PubMed ID: 10331908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of new acrylic bone cements prepared with oleic acid derivatives.
    Vázquez B; Deb S; Bonfield W; Román JS
    J Biomed Mater Res; 2002; 63(2):88-97. PubMed ID: 11870640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical properties of oligomer-modified acrylic bone cement.
    Puska MA; Kokkari AK; Närhi TO; Vallittu PK
    Biomaterials; 2003 Feb; 24(3):417-25. PubMed ID: 12423596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of powder particle size distribution on complex viscosity and other properties of acrylic bone cement for vertebroplasty and kyphoplasty.
    Hernández L; Gurruchaga M; Goñi I
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):98-103. PubMed ID: 16240433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical properties of acrylic bone cement containing PMMA-SiO2 hybrid sol-gel material.
    Yang JM; Lu CS; Hsu YG; Shih CH
    J Biomed Mater Res; 1997; 38(2):143-54. PubMed ID: 9178742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional Properties of Low-Modulus PMMA Bone Cements Containing Linoleic Acid.
    Robo C; Wenner D; Ubhayasekera SJKA; Hilborn J; Öhman-Mägi C; Persson C
    J Funct Biomater; 2021 Jan; 12(1):. PubMed ID: 33477310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viscoelastic behaviour of acrylic bone cements.
    Yetkinler DN; Litsky AS
    Biomaterials; 1998 Sep; 19(17):1551-9. PubMed ID: 9830980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of cement modulus on the shear properties of the bone-cement interface.
    Funk MJ; Litsky AS
    Biomaterials; 1998 Sep; 19(17):1561-7. PubMed ID: 9830981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histological and radiographic evaluation of polymethylmethacrylate with two different concentrations of barium sulfate in a sheep vertebroplasty model.
    Kobayashi N; Togawa D; Fujishiro T; Powell KA; Turner AS; Seim HB; Bauer TW
    J Biomed Mater Res A; 2005 Oct; 75(1):123-7. PubMed ID: 16037940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of mixing method on the cement temperature-mixing time history and doughing time of three acrylic cements for vertebroplasty.
    Baroud G; Samara M; Steffen T
    J Biomed Mater Res B Appl Biomater; 2004 Jan; 68(1):112-6. PubMed ID: 14689504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How to determine the permeability for cement infiltration of osteoporotic cancellous bone.
    Baroud G; Wu JZ; Bohner M; Sponagel S; Steffen T
    Med Eng Phys; 2003 May; 25(4):283-8. PubMed ID: 12649012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy.
    Nussbaum DA; Gailloud P; Murphy K
    J Vasc Interv Radiol; 2004 Feb; 15(2 Pt 1):121-6. PubMed ID: 14963178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel high-viscosity, two-solution acrylic bone cement: effect of chemical composition on properties.
    Hasenwinkel JM; Lautenschlager EP; Wixson RL; Gilbert JL
    J Biomed Mater Res; 1999 Oct; 47(1):36-45. PubMed ID: 10400878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure.
    Bohner M; Gasser B; Baroud G; Heini P
    Biomaterials; 2003 Jul; 24(16):2721-30. PubMed ID: 12711518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of oscillatory mixing on the injectability of three acrylic and two calcium-phosphate bone cements for vertebroplasty.
    Baroud G; Matsushita C; Samara M; Beckman L; Steffen T
    J Biomed Mater Res B Appl Biomater; 2004 Jan; 68(1):105-11. PubMed ID: 14689503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of new acrylic bone cement based on methyl methacrylate/1-hydroxypropyl methacrylate monomer.
    Pascual B; Goñi I; Gurruchaga M
    J Biomed Mater Res; 1999; 48(4):447-57. PubMed ID: 10421686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal analysis of bone cement polymerisation at the cement-bone interface.
    Stańczyk M; van Rietbergen B
    J Biomech; 2004 Dec; 37(12):1803-10. PubMed ID: 15519587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of mixing techniques on the physical properties of acrylic bone cement.
    Dunne NJ; Orr JF
    Biomaterials; 2001 Jul; 22(13):1819-26. PubMed ID: 11396886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Augmentation of osteoporotic bone: effect of pulsed jet-lavage on injection forces, cement distribution, and push-out strength of implants.
    Gisep A; Curtis R; Flütsch S; Suhm N
    J Biomed Mater Res B Appl Biomater; 2006 Jul; 78(1):83-8. PubMed ID: 16333851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of mixing method and storage temperature of cement constituents on the fatigue and porosity of acrylic bone cement.
    Lewis G
    J Biomed Mater Res; 1999; 48(2):143-9. PubMed ID: 10331907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.