BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22098913)

  • 1. Thiel-fixation preserves the non-linear load-deformation characteristic of spinal motion segments, but increases their flexibility.
    Wilke HJ; Werner K; Häussler K; Reinehr M; Böckers TM
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2133-7. PubMed ID: 22098913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formalin fixation strongly influences biomechanical properties of the spine.
    Wilke HJ; Krischak S; Claes LE
    J Biomech; 1996 Dec; 29(12):1629-31. PubMed ID: 8945663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical evaluation of a new total posterior-element replacement system.
    Wilke HJ; Schmidt H; Werner K; Schmölz W; Drumm J
    Spine (Phila Pa 1976); 2006 Nov; 31(24):2790-6; discussion 2797. PubMed ID: 17108830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the Total Facet Arthroplasty System after complete laminectomy-facetectomy on the biomechanics of implanted and adjacent segments.
    Phillips FM; Tzermiadianos MN; Voronov LI; Havey RM; Carandang G; Renner SM; Rosler DM; Ochoa JA; Patwardhan AG
    Spine J; 2009; 9(1):96-102. PubMed ID: 18440280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments.
    Busscher I; van Dieën JH; Kingma I; van der Veen AJ; Verkerke GJ; Veldhuizen AG
    Spine (Phila Pa 1976); 2009 Dec; 34(26):2858-64. PubMed ID: 20010393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model.
    Cunningham BW; Gordon JD; Dmitriev AE; Hu N; McAfee PC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S110-7. PubMed ID: 14560182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament.
    McAfee PC; Cunningham B; Dmitriev A; Hu N; Woo Kim S; Cappuccino A; Pimenta L
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S176-85. PubMed ID: 14560189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical comparison of calf and human spines.
    Wilke HJ; Krischak S; Claes L
    J Orthop Res; 1996 May; 14(3):500-3. PubMed ID: 8676264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone.
    Unger S; Blauth M; Schmoelz W
    Bone; 2010 Dec; 47(6):1048-53. PubMed ID: 20736094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interbody device endplate engagement effects on motion segment biomechanics.
    Buttermann GR; Beaubien BP; Freeman AL; Stoll JE; Chappuis JL
    Spine J; 2009 Jul; 9(7):564-73. PubMed ID: 19457722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro biomechanical characteristics of the spine: a comparison between human and porcine spinal segments.
    Busscher I; van der Veen AJ; van Dieën JH; Kingma I; Verkerke GJ; Veldhuizen AG
    Spine (Phila Pa 1976); 2010 Jan; 35(2):E35-42. PubMed ID: 20081499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of creep and recovery on the in vitro biomechanical characteristics of human multi-level thoracolumbar spinal segments.
    Busscher I; van Dieën JH; van der Veen AJ; Kingma I; Meijer GJ; Verkerke GJ; Veldhuizen AG
    Clin Biomech (Bristol, Avon); 2011 Jun; 26(5):438-44. PubMed ID: 21251737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical evaluation of the Total Facet Arthroplasty System: 3-dimensional kinematics.
    Zhu Q; Larson CR; Sjovold SG; Rosler DM; Keynan O; Wilson DR; Cripton PA; Oxland TR
    Spine (Phila Pa 1976); 2007 Jan; 32(1):55-62. PubMed ID: 17202893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilizing potential of anterior, posterior, and circumferential fixation for multilevel cervical arthrodesis: an in vitro human cadaveric study of the operative and adjacent segment kinematics.
    Dmitriev AE; Kuklo TR; Lehman RA; Rosner MK
    Spine (Phila Pa 1976); 2007 Mar; 32(6):E188-96. PubMed ID: 17413459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical evaluation of occipitocervicothoracic fusion: impact of partial or sequential fixation.
    Cheng BC; Hafez MA; Cunningham B; Serhan H; Welch WC
    Spine J; 2008; 8(5):821-6. PubMed ID: 17981098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical evaluation of short-segment posterior instrumentation with and without crosslinks in a human cadaveric unstable thoracolumbar burst fracture model.
    Wahba GM; Bhatia N; Bui CN; Lee KH; Lee TQ
    Spine (Phila Pa 1976); 2010 Feb; 35(3):278-85. PubMed ID: 20075769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical effect of different interspinous devices on lumbar spinal range of motion under preload conditions.
    Hartmann F; Dietz SO; Hely H; Rommens PM; Gercek E
    Arch Orthop Trauma Surg; 2011 Jul; 131(7):917-26. PubMed ID: 21190031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests?
    Kettler A; Liakos L; Haegele B; Wilke HJ
    Eur Spine J; 2007 Dec; 16(12):2186-92. PubMed ID: 17721711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal biomechanical properties are significantly altered with a novel embalming method.
    Holewijn RM; Faraj SSA; Kingma I; van Royen BJ; de Kleuver M; van der Veen AJ
    J Biomech; 2017 Apr; 55():144-146. PubMed ID: 28259461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.