These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 22099341)
1. Functional genomics in aquatic toxicology-do not forget the function. Nikinmaa M; Rytkönen KT Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):16-24. PubMed ID: 22099341 [TBL] [Abstract][Full Text] [Related]
2. A genomic and ecotoxicological perspective of DNA array studies in aquatic environmental risk assessment. Piña B; Barata C Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):40-9. PubMed ID: 22099343 [TBL] [Abstract][Full Text] [Related]
3. Progress and promises in toxicogenomics in aquatic toxicology: is technical innovation driving scientific innovation? Fent K; Sumpter JP Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):25-39. PubMed ID: 22099342 [TBL] [Abstract][Full Text] [Related]
4. Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Snape JR; Maund SJ; Pickford DB; Hutchinson TH Aquat Toxicol; 2004 Apr; 67(2):143-54. PubMed ID: 15003699 [TBL] [Abstract][Full Text] [Related]
5. Incorporating exposure into aquatic toxicological studies: an imperative. Wang WX Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):9-15. PubMed ID: 22099340 [TBL] [Abstract][Full Text] [Related]
6. Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism. Kim HJ; Koedrith P; Seo YR Int J Mol Sci; 2015 May; 16(6):12261-87. PubMed ID: 26035755 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome profiling in crustaceans as a tool for ecotoxicogenomics: Daphnia magna DNA microarray. Watanabe H; Kobayashi K; Kato Y; Oda S; Abe R; Tatarazako N; Iguchi T Cell Biol Toxicol; 2008 Dec; 24(6):641-7. PubMed ID: 18956242 [TBL] [Abstract][Full Text] [Related]
8. Moving beyond a descriptive aquatic toxicology: the value of biological process and trait information. Segner H Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):50-5. PubMed ID: 22099344 [TBL] [Abstract][Full Text] [Related]
9. First REP-LECOTOX Workshop-Ecotoxicogenomics: The challenge of integrating genomics/proteomics/metabolomics into aquatic and terrestrial ecotoxicology. Kovacevic R; Teodorovic I; Kaisarevic S; Planojevic I; Fa S; Dakic V; Pogrmic K; Virijevic S Environ Sci Pollut Res Int; 2009 Aug; 16 Suppl 1():S130-1. PubMed ID: 19306027 [No Abstract] [Full Text] [Related]
10. Genes and environment - striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Steinberg CE; Stürzenbaum SR; Menzel R Sci Total Environ; 2008 Aug; 400(1-3):142-61. PubMed ID: 18817948 [TBL] [Abstract][Full Text] [Related]
11. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? Scown TM; van Aerle R; Tyler CR Crit Rev Toxicol; 2010 Aug; 40(7):653-70. PubMed ID: 20662713 [TBL] [Abstract][Full Text] [Related]
12. The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics. Raisuddin S; Kwok KW; Leung KM; Schlenk D; Lee JS Aquat Toxicol; 2007 Jul; 83(3):161-73. PubMed ID: 17560667 [TBL] [Abstract][Full Text] [Related]
13. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Katagi T Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic research in aquatic toxicology: perspectives and future directions. Hahn ME Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):67-71. PubMed ID: 22099346 [TBL] [Abstract][Full Text] [Related]
15. Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Poynton HC; Varshavsky JR; Chang B; Cavigiolio G; Chan S; Holman PS; Loguinov AV; Bauer DJ; Komachi K; Theil EC; Perkins EJ; Hughes O; Vulpe CD Environ Sci Technol; 2007 Feb; 41(3):1044-50. PubMed ID: 17328222 [TBL] [Abstract][Full Text] [Related]
16. Nickel and binary metal mixture responses in Daphnia magna: molecular fingerprints and (sub)organismal effects. Vandenbrouck T; Soetaert A; van der Ven K; Blust R; De Coen W Aquat Toxicol; 2009 Apr; 92(1):18-29. PubMed ID: 19187980 [TBL] [Abstract][Full Text] [Related]
17. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity. Kiaune L; Singhasemanon N Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the occurrence and risk assessment of polar pesticides in the Llobregat River Basin (NE Spain). Köck-Schulmeyer M; Ginebreda A; González S; Cortina JL; de Alda ML; Barceló D Chemosphere; 2012 Jan; 86(1):8-16. PubMed ID: 21925700 [TBL] [Abstract][Full Text] [Related]
19. From genomes to functions in aquatic biology. Nikinmaa M; Rytkönen KT Mar Genomics; 2012 Mar; 5():1-6. PubMed ID: 22325716 [TBL] [Abstract][Full Text] [Related]
20. Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Matranga V; Corsi I Mar Environ Res; 2012 May; 76():32-40. PubMed ID: 22391237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]