These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2274 related articles for article (PubMed ID: 22099467)

  • 1. Functional network organization of the human brain.
    Power JD; Cohen AL; Nelson SM; Wig GS; Barnes KA; Church JA; Vogel AC; Laumann TO; Miezin FM; Schlaggar BL; Petersen SE
    Neuron; 2011 Nov; 72(4):665-78. PubMed ID: 22099467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driving and driven architectures of directed small-world human brain functional networks.
    Yan C; He Y
    PLoS One; 2011; 6(8):e23460. PubMed ID: 21858129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond modularity: Fine-scale mechanisms and rules for brain network reconfiguration.
    Khambhati AN; Mattar MG; Wymbs NF; Grafton ST; Bassett DS
    Neuroimage; 2018 Feb; 166():385-399. PubMed ID: 29138087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic and task-evoked network architectures of the human brain.
    Cole MW; Bassett DS; Power JD; Braver TS; Petersen SE
    Neuron; 2014 Jul; 83(1):238-51. PubMed ID: 24991964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Functional Relevance of Task-State Functional Connectivity.
    Cole MW; Ito T; Cocuzza C; Sanchez-Romero R
    J Neurosci; 2021 Mar; 41(12):2684-2702. PubMed ID: 33542083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain.
    Spreng RN; Sepulcre J; Turner GR; Stevens WD; Schacter DL
    J Cogn Neurosci; 2013 Jan; 25(1):74-86. PubMed ID: 22905821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resting network is composed of more than one neural pattern: an fMRI study.
    Lee TW; Northoff G; Wu YT
    Neuroscience; 2014 Aug; 274():198-208. PubMed ID: 24881572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Varying Network Measures in Resting and Task States Using Graph Theoretical Analysis.
    Yang CY; Lin CP
    Brain Topogr; 2015 Jul; 28(4):529-40. PubMed ID: 25877489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different topological organization of human brain functional networks with eyes open versus eyes closed.
    Xu P; Huang R; Wang J; Van Dam NT; Xie T; Dong Z; Chen C; Gu R; Zang YF; He Y; Fan J; Luo YJ
    Neuroimage; 2014 Apr; 90():246-55. PubMed ID: 24434242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
    Huang X; Xu K; Chu C; Jiang T; Yu S
    J Neurosci; 2017 Oct; 37(43):10481-10497. PubMed ID: 28951453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting spontaneous activity in the default mode network predicts performance decline during prolonged attention workload.
    Gui D; Xu S; Zhu S; Fang Z; Spaeth AM; Xin Y; Feng T; Rao H
    Neuroimage; 2015 Oct; 120():323-330. PubMed ID: 26196666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The (in)stability of functional brain network measures across thresholds.
    Garrison KA; Scheinost D; Finn ES; Shen X; Constable RT
    Neuroimage; 2015 Sep; 118():651-61. PubMed ID: 26021218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Graph theoretical approach to study the organization of the cortical networks during different mathematical tasks.
    Klados MA; Kanatsouli K; Antoniou I; Babiloni F; Tsirka V; Bamidis PD; Micheloyannis S
    PLoS One; 2013; 8(8):e71800. PubMed ID: 23990992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for independent component graph analysis of resting-state fMRI.
    Ribeiro de Paula D; Ziegler E; Abeyasinghe PM; Das TK; Cavaliere C; Aiello M; Heine L; di Perri C; Demertzi A; Noirhomme Q; Charland-Verville V; Vanhaudenhuyse A; Stender J; Gomez F; Tshibanda JL; Laureys S; Owen AM; Soddu A
    Brain Behav; 2017 Mar; 7(3):e00626. PubMed ID: 28293468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of large-scale functional brain networks in children.
    Supekar K; Musen M; Menon V
    PLoS Biol; 2009 Jul; 7(7):e1000157. PubMed ID: 19621066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping language with resting-state functional magnetic resonance imaging: A study on the functional profile of the language network.
    Branco P; Seixas D; Castro SL
    Hum Brain Mapp; 2020 Feb; 41(2):545-560. PubMed ID: 31609045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Handedness-dependent functional organizational patterns within the bilateral vestibular cortical network revealed by fMRI connectivity based parcellation.
    Kirsch V; Boegle R; Keeser D; Kierig E; Ertl-Wagner B; Brandt T; Dieterich M
    Neuroimage; 2018 Sep; 178():224-237. PubMed ID: 29787866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting overlapped functional clusters in resting state fMRI with Connected Iterative Scan: a graph theory based clustering algorithm.
    Yan X; Kelley S; Goldberg M; Biswal BB
    J Neurosci Methods; 2011 Jul; 199(1):108-18. PubMed ID: 21565220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 114.