BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22099630)

  • 41. Generic binding sites, generic DNA-binding domains: where does specific promoter recognition come from?
    Georges AB; Benayoun BA; Caburet S; Veitia RA
    FASEB J; 2010 Feb; 24(2):346-56. PubMed ID: 19762556
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gene regulation and genome function in Archaea: a progress survey.
    Huber H; Soppa J
    Arch Microbiol; 2008 Sep; 190(3):195-6. PubMed ID: 18641970
    [No Abstract]   [Full Text] [Related]  

  • 43. The basal transcription factors TBP and TFB from the mesophilic archaeon Methanosarcina mazeii: structure and conformational changes upon interaction with stress-gene promoters.
    Thomsen J; De Biase A; Kaczanowski S; Macario AJ; Thomm M; Zielenkiewicz P; MacColl R; Conway de Macario E
    J Mol Biol; 2001 Jun; 309(3):589-603. PubMed ID: 11397082
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scaling relationship in the gene content of transcriptional machinery in bacteria.
    Pérez-Rueda E; Janga SC; Martínez-Antonio A
    Mol Biosyst; 2009 Dec; 5(12):1494-501. PubMed ID: 19763344
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacterial regulatory networks are extremely flexible in evolution.
    Lozada-Chávez I; Janga SC; Collado-Vides J
    Nucleic Acids Res; 2006; 34(12):3434-45. PubMed ID: 16840530
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcription Regulation in Archaea.
    Gehring AM; Walker JE; Santangelo TJ
    J Bacteriol; 2016 Jul; 198(14):1906-1917. PubMed ID: 27137495
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcription regulation in the third domain.
    Karr EA
    Adv Appl Microbiol; 2014; 89():101-33. PubMed ID: 25131401
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RNA degradation in Archaea and Gram-negative bacteria different from Escherichia coli.
    Evguenieva-Hackenberg E; Klug G
    Prog Mol Biol Transl Sci; 2009; 85():275-317. PubMed ID: 19215775
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea.
    Deppenmeier U; Johann A; Hartsch T; Merkl R; Schmitz RA; Martinez-Arias R; Henne A; Wiezer A; Bäumer S; Jacobi C; Brüggemann H; Lienard T; Christmann A; Bömeke M; Steckel S; Bhattacharyya A; Lykidis A; Overbeek R; Klenk HP; Gunsalus RP; Fritz HJ; Gottschalk G
    J Mol Microbiol Biotechnol; 2002 Jul; 4(4):453-61. PubMed ID: 12125824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A unique ATG triplet downstream of gene start in archaea: implications for translation initiation and evolution.
    Xiaohui C; Jin W
    Gene; 2004 Feb; 327(1):75-9. PubMed ID: 14960362
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ExtraTrain: a database of Extragenic regions and Transcriptional information in prokaryotic organisms.
    Pareja E; Pareja-Tobes P; Manrique M; Pareja-Tobes E; Bonal J; Tobes R
    BMC Microbiol; 2006 Mar; 6():29. PubMed ID: 16539733
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptional fidelity and proofreading in Archaea and implications for the mechanism of TFS-induced RNA cleavage.
    Lange U; Hausner W
    Mol Microbiol; 2004 May; 52(4):1133-43. PubMed ID: 15130130
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context.
    Bartossek R; Nicol GW; Lanzen A; Klenk HP; Schleper C
    Environ Microbiol; 2010 Apr; 12(4):1075-88. PubMed ID: 20132279
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Systems biology approaches to defining transcription regulatory networks in halophilic archaea.
    Darnell CL; Schmid AK
    Methods; 2015 Sep; 86():102-14. PubMed ID: 25976837
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales.
    Leigh JA; Albers SV; Atomi H; Allers T
    FEMS Microbiol Rev; 2011 Jul; 35(4):577-608. PubMed ID: 21265868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Key Concepts and Challenges in Archaeal Transcription.
    Blombach F; Matelska D; Fouqueau T; Cackett G; Werner F
    J Mol Biol; 2019 Sep; 431(20):4184-4201. PubMed ID: 31260691
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism and regulation of transcription in archaea.
    Bell SD; Jackson SP
    Curr Opin Microbiol; 2001 Apr; 4(2):208-13. PubMed ID: 11282478
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes.
    Martínez-Núñez MA; Poot-Hernandez AC; Rodríguez-Vázquez K; Perez-Rueda E
    PLoS One; 2013; 8(7):e69707. PubMed ID: 23922780
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transcription Regulators in Archaea: Homologies and Differences with Bacterial Regulators.
    Lemmens L; Maklad HR; Bervoets I; Peeters E
    J Mol Biol; 2019 Sep; 431(20):4132-4146. PubMed ID: 31195017
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genomic repertoires of DNA-binding transcription factors across the tree of life.
    Charoensawan V; Wilson D; Teichmann SA
    Nucleic Acids Res; 2010 Nov; 38(21):7364-77. PubMed ID: 20675356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.