These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22099723)

  • 1. GM-CSF-induced regulatory T cells selectively inhibit anti-acetylcholine receptor-specific immune responses in experimental myasthenia gravis.
    Sheng JR; Muthusamy T; Prabhakar BS; Meriggioli MN
    J Neuroimmunol; 2011 Dec; 240-241():65-73. PubMed ID: 22099723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory T cells induced by GM-CSF suppress ongoing experimental myasthenia gravis.
    Sheng JR; Li LC; Ganesh BB; Prabhakar BS; Meriggioli MN
    Clin Immunol; 2008 Aug; 128(2):172-80. PubMed ID: 18502693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis.
    Sheng JR; Quan S; Soliven B
    J Immunol; 2014 Sep; 193(6):2669-77. PubMed ID: 25135828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for treating autoimmunity: novel insights from experimental myasthenia gravis.
    Meriggioli MN; Sheng JR; Li L; Prabhakar BS
    Ann N Y Acad Sci; 2008; 1132():276-82. PubMed ID: 18567878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of experimental autoimmune myasthenia gravis by granulocyte-macrophage colony-stimulating factor is associated with an expansion of FoxP3+ regulatory T cells.
    Sheng JR; Li L; Ganesh BB; Vasu C; Prabhakar BS; Meriggioli MN
    J Immunol; 2006 Oct; 177(8):5296-306. PubMed ID: 17015715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study on induction of tolerance to experimental autoimmune myasthenia gravis by immature dendritic cells.
    Li L; Sun S; Cao X; Wang Y; Chang L; Yin X
    J Huazhong Univ Sci Technolog Med Sci; 2005; 25(2):215-8. PubMed ID: 16116977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naturally occurring CD4+CD25+ regulatory T cells prevent but do not improve experimental myasthenia gravis.
    Nessi V; Nava S; Ruocco C; Toscani C; Mantegazza R; Antozzi C; Baggi F
    J Immunol; 2010 Nov; 185(9):5656-67. PubMed ID: 20881192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IL-10-producing CD4+CD25+ regulatory T cells play a critical role in granulocyte-macrophage colony-stimulating factor-induced suppression of experimental autoimmune thyroiditis.
    Gangi E; Vasu C; Cheatem D; Prabhakar BS
    J Immunol; 2005 Jun; 174(11):7006-13. PubMed ID: 15905543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue plasminogen activator involvement in experimental autoimmune myasthenia gravis: aggravation and therapeutic potential.
    Gur-Wahnon D; Mizrachi T; Wald-Altman S; Al-Roof Higazi A; Brenner T
    J Autoimmun; 2014 Aug; 52():36-43. PubMed ID: 24423642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells.
    Duan RS; Adikari SB; Huang YM; Link H; Xiao BG
    Neurobiol Dis; 2004 Jul; 16(2):461-7. PubMed ID: 15193302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor.
    Yi HJ; Chae CS; So JS; Tzartos SJ; Souroujon MC; Fuchs S; Im SH
    Mol Immunol; 2008 Nov; 46(1):192-201. PubMed ID: 18799218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel animal models of acetylcholine receptor antibody-related myasthenia gravis.
    Tüzün E; Allman W; Ulusoy C; Yang H; Christadoss P
    Ann N Y Acad Sci; 2012 Dec; 1274():133-9. PubMed ID: 23252908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant IgG2a Fc (M045) multimers effectively suppress experimental autoimmune myasthenia gravis.
    Thiruppathi M; Sheng JR; Li L; Prabhakar BS; Meriggioli MN
    J Autoimmun; 2014 Aug; 52():64-73. PubMed ID: 24388113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4.
    Im SH; Barchan D; Maiti PK; Fuchs S; Souroujon MC
    J Immunol; 2001 Jun; 166(11):6893-8. PubMed ID: 11359850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis.
    Schaffert H; Pelz A; Saxena A; Losen M; Meisel A; Thiel A; Kohler S
    Eur J Immunol; 2015 May; 45(5):1339-47. PubMed ID: 25676041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Animal models of myasthenia gravis.
    Christadoss P; Poussin M; Deng C
    Clin Immunol; 2000 Feb; 94(2):75-87. PubMed ID: 10637092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GM-CSF-induced CD11c+CD8a--dendritic cells facilitate Foxp3+ and IL-10+ regulatory T cell expansion resulting in suppression of autoimmune thyroiditis.
    Ganesh BB; Cheatem DM; Sheng JR; Vasu C; Prabhakar BS
    Int Immunol; 2009 Mar; 21(3):269-82. PubMed ID: 19174473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of peripheral tolerance to experimental autoimmune myasthenia gravis by acetylcholine receptor-pulsed dendritic cells.
    Xiao BG; Duan RS; Link H; Huang YM
    Cell Immunol; 2003 May; 223(1):63-9. PubMed ID: 12914759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis.
    Xiao BG; Duan RS; Zhu WH; Lu CZ
    Cell Immunol; 2006 Jun; 241(2):95-101. PubMed ID: 17005165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A GMCSF-Neuroantigen Tolerogenic Vaccine Elicits Systemic Lymphocytosis of CD4
    Moorman CD; Curtis AD; Bastian AG; Elliott SE; Mannie MD
    Front Immunol; 2018; 9():3119. PubMed ID: 30687323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.