BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22100056)

  • 1. Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions.
    San Antonio T; Ciaccia M; Müller-Karger C; Casanova E
    Med Eng Phys; 2012 Sep; 34(7):914-9. PubMed ID: 22100056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments.
    Trabelsi N; Yosibash Z
    J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V; Horak Z; Mikulenka P; Dzupa V
    Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new approach to determine the accuracy of morphology-elasticity relationships in continuum FE analyses of human proximal femur.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    J Biomech; 2012 Nov; 45(16):2884-92. PubMed ID: 23017379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of orthotropic and isotropic bone adaptation in the femur.
    Geraldes DM; Phillips AT
    Int J Numer Method Biomed Eng; 2014 Sep; 30(9):873-89. PubMed ID: 24753477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis.
    Enns-Bray WS; Owoc JS; Nishiyama KK; Boyd SK
    J Biomech; 2014 Oct; 47(13):3272-8. PubMed ID: 25219361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation.
    Mathai B; Dhara S; Gupta S
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1115-1134. PubMed ID: 33768358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur.
    Yang H; Ma X; Guo T
    Med Eng Phys; 2010 Jul; 32(6):553-60. PubMed ID: 20435503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.
    Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V
    Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of orthotropy on biomechanics of peri-implant bone in complete mandible model with full dentition.
    Ding X; Liao SH; Zhu XH; Wang HM
    Biomed Res Int; 2014; 2014():709398. PubMed ID: 25530968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions.
    Peng L; Bai J; Zeng X; Zhou Y
    Med Eng Phys; 2006 Apr; 28(3):227-33. PubMed ID: 16076560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trabecular bone adaptation with an orthotropic material model.
    Miller Z; Fuchs MB; Arcan M
    J Biomech; 2002 Feb; 35(2):247-56. PubMed ID: 11784543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of orthotropic bone elastic constants using FEA and modal analysis.
    Taylor WR; Roland E; Ploeg H; Hertig D; Klabunde R; Warner MD; Hobatho MC; Rakotomanana L; Clift SE
    J Biomech; 2002 Jun; 35(6):767-73. PubMed ID: 12020996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.