These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 22100076)

  • 1. Porous titanium materials with entangled wire structure for load-bearing biomedical applications.
    He G; Liu P; Tan Q
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):16-31. PubMed ID: 22100076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications.
    He G; Liu P; Tan Q; Jiang G
    J Mech Behav Biomed Mater; 2013 Dec; 28():309-19. PubMed ID: 24021173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Studies on personalized porous titanium implant fabricated using three-dimensional printing forming technique].
    Xiong Y; Chen P; Sun J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):247-50. PubMed ID: 22616167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of entangled porous titanium by BisGMA for load-bearing biomedical applications.
    Liu Y; Jiang G; He G
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():37-41. PubMed ID: 26838821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres.
    Zou C; Zhang E; Li M; Zeng S
    J Mater Sci Mater Med; 2008 Jan; 19(1):401-5. PubMed ID: 17607525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous titanium with entangled structure filled with biodegradable magnesium for potential biomedical applications.
    Jiang G; Wang C; Li Q; Dong J; He G
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():142-9. PubMed ID: 25492182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM).
    Parthasarathy J; Starly B; Raman S; Christensen A
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):249-59. PubMed ID: 20142109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.
    Li F; Li J; Xu G; Liu G; Kou H; Zhou L
    J Mech Behav Biomed Mater; 2015 Jun; 46():104-14. PubMed ID: 25778351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High strength, low stiffness, porous NiTi with superelastic properties.
    Greiner C; Oppenheimer SM; Dunand DC
    Acta Biomater; 2005 Nov; 1(6):705-16. PubMed ID: 16701851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and properties of biomedical porous titanium alloys by gelcasting.
    Yang D; Shao H; Guo Z; Lin T; Fan L
    Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of a porous Ti-6Al-4V implant with a low stiffness for biomedical application.
    Li X; Wang CT; Zhang WG; Li YC
    Proc Inst Mech Eng H; 2009 Feb; 223(2):173-8. PubMed ID: 19278194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic flexural properties of multistranded stainless steel versus conventional nickel titanium archwires.
    Rucker BK; Kusy RP
    Angle Orthod; 2002 Aug; 72(4):302-9. PubMed ID: 12169029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and mechanical characterization of porous titanium bone substitutes.
    Barbas A; Bonnet AS; Lipinski P; Pesci R; Dubois G
    J Mech Behav Biomed Mater; 2012 May; 9():34-44. PubMed ID: 22498281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming.
    Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ
    Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titanium with aligned, elongated pores for orthopedic tissue engineering applications.
    Spoerke ED; Murray NG; Li H; Brinson LC; Dunand DC; Stupp SI
    J Biomed Mater Res A; 2008 Feb; 84(2):402-12. PubMed ID: 17618479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties and osteoconductivity of porous bioactive titanium.
    Takemoto M; Fujibayashi S; Neo M; Suzuki J; Kokubo T; Nakamura T
    Biomaterials; 2005 Oct; 26(30):6014-23. PubMed ID: 15885769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancellous bone from porous Ti6Al4V by multiple coating technique.
    Li JP; Li SH; Van Blitterswijk CA; de Groot K
    J Mater Sci Mater Med; 2006 Feb; 17(2):179-85. PubMed ID: 16502251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach to the fabrication of porous magnesium with well-controlled 3D pore structure for orthopedic applications.
    Jiang G; He G
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():317-20. PubMed ID: 25175219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.