These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
430 related articles for article (PubMed ID: 22100076)
21. In vivo biocompatibility and mechanical properties of porous zein scaffolds. Wang HJ; Gong SJ; Lin ZX; Fu JX; Xue ST; Huang JC; Wang JY Biomaterials; 2007 Sep; 28(27):3952-64. PubMed ID: 17582490 [TBL] [Abstract][Full Text] [Related]
22. Processing and biocompatibility evaluation of laser processed porous titanium. Xue W; Krishna BV; Bandyopadhyay A; Bose S Acta Biomater; 2007 Nov; 3(6):1007-18. PubMed ID: 17627910 [TBL] [Abstract][Full Text] [Related]
23. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder. Bolzoni L; Weissgaerber T; Kieback B; Ruiz-Navas EM; Gordo E J Mech Behav Biomed Mater; 2013 Apr; 20():149-61. PubMed ID: 23455171 [TBL] [Abstract][Full Text] [Related]
24. Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications. El-Hajje A; Kolos EC; Wang JK; Maleksaeedi S; He Z; Wiria FE; Choong C; Ruys AJ J Mater Sci Mater Med; 2014 Nov; 25(11):2471-80. PubMed ID: 25052736 [TBL] [Abstract][Full Text] [Related]
25. Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: Characterisation and mechanical properties. Jia J; Siddiq AR; Kennedy AR J Mech Behav Biomed Mater; 2015 Aug; 48():229-240. PubMed ID: 25957839 [TBL] [Abstract][Full Text] [Related]
26. Low stiffness porous Ti structures for load-bearing implants. Krishna BV; Bose S; Bandyopadhyay A Acta Biomater; 2007 Nov; 3(6):997-1006. PubMed ID: 17532277 [TBL] [Abstract][Full Text] [Related]
28. Structure and mechanical properties of Cresco-Ti laser-welded joints and stress analyses using finite element models of fixed distal extension and fixed partial prosthetic designs. Uysal H; Kurtoglu C; Gurbuz R; Tutuncu N J Prosthet Dent; 2005 Mar; 93(3):235-44. PubMed ID: 15775924 [TBL] [Abstract][Full Text] [Related]
29. Mechanical biocompatibilities of titanium alloys for biomedical applications. Niinomi M J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769 [TBL] [Abstract][Full Text] [Related]
30. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK? Torstrick FB; Evans NT; Stevens HY; Gall K; Guldberg RE Clin Orthop Relat Res; 2016 Nov; 474(11):2373-2383. PubMed ID: 27154533 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of a high fracture toughness composite ceramic for dental applications. Aboushelib MN; Kleverlaan CJ; Feilzer AJ J Prosthodont; 2008 Oct; 17(7):538-44. PubMed ID: 18761572 [TBL] [Abstract][Full Text] [Related]
32. A novel nano-porous alumina biomaterial with potential for loading with bioactive materials. Walpole AR; Xia Z; Wilson CW; Triffitt JT; Wilshaw PR J Biomed Mater Res A; 2009 Jul; 90(1):46-54. PubMed ID: 18481790 [TBL] [Abstract][Full Text] [Related]
33. Mechanical degradation of porous titanium with entangled structure filled with biodegradable magnesium in Hanks' solution. Li Q; Jiang G; Wang C; Dong J; He G Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():349-54. PubMed ID: 26354275 [TBL] [Abstract][Full Text] [Related]
34. Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques. Torres Y; Lascano S; Bris J; Pavón J; Rodriguez JA Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():148-55. PubMed ID: 24582234 [TBL] [Abstract][Full Text] [Related]
35. Porous material based on spongy titanium granules: structure, mechanical properties, and osseointegration. Rubshtein AP; Trakhtenberg ISh; Makarova EB; Triphonova EB; Bliznets DG; Yakovenkova LI; Vladimirov AB Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():363-9. PubMed ID: 24411389 [TBL] [Abstract][Full Text] [Related]
36. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962 [TBL] [Abstract][Full Text] [Related]
37. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
38. Formability and mechanical properties of porous titanium produced by a moldless process. Naito Y; Bae J; Tomotake Y; Hamada K; Asaoka K; Ichikawa T J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):1090-4. PubMed ID: 23559484 [TBL] [Abstract][Full Text] [Related]
39. Spider silk as a load bearing biomaterial: tailoring mechanical properties via structural modifications. Brown CP; Rosei F; Traversa E; Licoccia S Nanoscale; 2011 Mar; 3(3):870-6. PubMed ID: 21212901 [TBL] [Abstract][Full Text] [Related]
40. Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium. Yao YT; Yang Y; Ye Q; Cao SS; Zhang XP; Zhao K; Jian Y J Mater Sci Mater Med; 2021 Jun; 32(6):72. PubMed ID: 34125310 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]