These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 22100097)

  • 1. A molecular dynamics study of Young's modulus change of semi-crystalline polymers during degradation by chain scissions.
    Ding L; Davidchack RL; Pan J
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):224-30. PubMed ID: 22100097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An atomic finite element model for biodegradable polymers. Part 2. A model for change in Young's modulus due to polymer chain scission.
    Gleadall A; Pan J; Kruft MA
    J Mech Behav Biomed Mater; 2015 Nov; 51():237-47. PubMed ID: 26275486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An entropy spring model for the Young's modulus change of biodegradable polymers during biodegradation.
    Wang Y; Han X; Pan J; Sinka C
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):14-21. PubMed ID: 19878898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A constitutive law for degrading bioresorbable polymers.
    Samami H; Pan J
    J Mech Behav Biomed Mater; 2016 Jun; 59():430-445. PubMed ID: 26971070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.
    Zhao X; Niinomi M; Nakai M
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature on elastic properties of CNT-polyethylene nanocomposite and its interface using MD simulations.
    Singh A; Kumar D
    J Mol Model; 2018 Jun; 24(7):178. PubMed ID: 29951941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An atomic finite element model for biodegradable polymers. Part 1. Formulation of the finite elements.
    Gleadall A; Pan J; Ding L; Kruft MA; Curcó D
    J Mech Behav Biomed Mater; 2015 Nov; 51():409-20. PubMed ID: 26355416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensile characteristics of carbene-functionalized CNTs subjected to physisorption of polymer chains: a molecular dynamics study.
    Ajori S; Haghighi S; Ansari R
    J Mol Model; 2019 Oct; 25(11):318. PubMed ID: 31598779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of mechanical properties of composites of HDPE/HA/EAA.
    Albano C; Perera R; Cataño L; Karam A; González G
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):467-75. PubMed ID: 21316635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.
    Liu H; Niinomi M; Nakai M; Hieda J; Cho K
    J Mech Behav Biomed Mater; 2014 Feb; 30():205-13. PubMed ID: 24317494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Miyamoto G; Furuhara T
    Acta Biomater; 2011 Aug; 7(8):3230-6. PubMed ID: 21569873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the nano-tensile mechanical properties of co-blended amphiphilic alginate fibers as oradurable biomaterials for specialized biomedical application.
    Johnston D; Kumar P; Choonara YE; du Toit LC; Pillay V
    J Mech Behav Biomed Mater; 2013 Jul; 23():80-102. PubMed ID: 23665485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent evaluation of mechanical properties and in vitro cytocompatibility of experimental composite-based nerve guidance conduits.
    Zhang XF; O'Shea H; Kehoe S; Boyd D
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1266-74. PubMed ID: 21783135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis.
    Pietrzak WS; Kumar M
    J Craniofac Surg; 2009 Sep; 20(5):1533-7. PubMed ID: 19816292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of rupture in glassy polymer bridges within filler aggregates.
    Froltsov VA; Klüppel M; Raos G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041801. PubMed ID: 23214604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between the Young's modulus of the stratum corneum and age: a pilot study.
    Hara Y; Masuda Y; Hirao T; Yoshikawa N
    Skin Res Technol; 2013 Aug; 19(3):339-45. PubMed ID: 23551131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Hieda J
    Acta Biomater; 2012 May; 8(5):1990-7. PubMed ID: 22326686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical heterogeneity in periodically deformed polymer glasses.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012601. PubMed ID: 24580249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.