BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 22100097)

  • 1. A molecular dynamics study of Young's modulus change of semi-crystalline polymers during degradation by chain scissions.
    Ding L; Davidchack RL; Pan J
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):224-30. PubMed ID: 22100097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An atomic finite element model for biodegradable polymers. Part 2. A model for change in Young's modulus due to polymer chain scission.
    Gleadall A; Pan J; Kruft MA
    J Mech Behav Biomed Mater; 2015 Nov; 51():237-47. PubMed ID: 26275486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An entropy spring model for the Young's modulus change of biodegradable polymers during biodegradation.
    Wang Y; Han X; Pan J; Sinka C
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):14-21. PubMed ID: 19878898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A constitutive law for degrading bioresorbable polymers.
    Samami H; Pan J
    J Mech Behav Biomed Mater; 2016 Jun; 59():430-445. PubMed ID: 26971070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.
    Zhao X; Niinomi M; Nakai M
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature on elastic properties of CNT-polyethylene nanocomposite and its interface using MD simulations.
    Singh A; Kumar D
    J Mol Model; 2018 Jun; 24(7):178. PubMed ID: 29951941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An atomic finite element model for biodegradable polymers. Part 1. Formulation of the finite elements.
    Gleadall A; Pan J; Ding L; Kruft MA; Curcó D
    J Mech Behav Biomed Mater; 2015 Nov; 51():409-20. PubMed ID: 26355416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensile characteristics of carbene-functionalized CNTs subjected to physisorption of polymer chains: a molecular dynamics study.
    Ajori S; Haghighi S; Ansari R
    J Mol Model; 2019 Oct; 25(11):318. PubMed ID: 31598779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of mechanical properties of composites of HDPE/HA/EAA.
    Albano C; Perera R; Cataño L; Karam A; González G
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):467-75. PubMed ID: 21316635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.
    Liu H; Niinomi M; Nakai M; Hieda J; Cho K
    J Mech Behav Biomed Mater; 2014 Feb; 30():205-13. PubMed ID: 24317494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Miyamoto G; Furuhara T
    Acta Biomater; 2011 Aug; 7(8):3230-6. PubMed ID: 21569873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the nano-tensile mechanical properties of co-blended amphiphilic alginate fibers as oradurable biomaterials for specialized biomedical application.
    Johnston D; Kumar P; Choonara YE; du Toit LC; Pillay V
    J Mech Behav Biomed Mater; 2013 Jul; 23():80-102. PubMed ID: 23665485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent evaluation of mechanical properties and in vitro cytocompatibility of experimental composite-based nerve guidance conduits.
    Zhang XF; O'Shea H; Kehoe S; Boyd D
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1266-74. PubMed ID: 21783135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis.
    Pietrzak WS; Kumar M
    J Craniofac Surg; 2009 Sep; 20(5):1533-7. PubMed ID: 19816292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of rupture in glassy polymer bridges within filler aggregates.
    Froltsov VA; Klüppel M; Raos G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041801. PubMed ID: 23214604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between the Young's modulus of the stratum corneum and age: a pilot study.
    Hara Y; Masuda Y; Hirao T; Yoshikawa N
    Skin Res Technol; 2013 Aug; 19(3):339-45. PubMed ID: 23551131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Hieda J
    Acta Biomater; 2012 May; 8(5):1990-7. PubMed ID: 22326686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical heterogeneity in periodically deformed polymer glasses.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012601. PubMed ID: 24580249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.