BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22100098)

  • 1. On the effect of marrow in the mechanical behavior and crush response of trabecular bone.
    Halgrin J; Chaari F; Markiewicz É
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):231-7. PubMed ID: 22100098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element dependence of stress evaluation for human trabecular bone.
    Depalle B; Chapurlat R; Walter-Le-Berre H; Bou-Saïd B; Follet H
    J Mech Behav Biomed Mater; 2013 Feb; 18():200-12. PubMed ID: 23246384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.
    Hosseini HS; Pahr DH; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-axial mechanical properties of human trabecular bone.
    Rincón-Kohli L; Zysset PK
    Biomech Model Mechanobiol; 2009 Jun; 8(3):195-208. PubMed ID: 18695984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical damping approach for assessing the role of marrow fat on the mechanical strength of trabecular bone.
    Braidotti P; Stagni L
    Med Hypotheses; 2007; 69(1):43-6. PubMed ID: 17287095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the failure behaviour of vertebral trabecular architectures under uni-axial compression and wedge action loading conditions.
    McDonnell P; Harrison N; McHugh PE
    Med Eng Phys; 2010 Jul; 32(6):569-76. PubMed ID: 20233666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling.
    Borah B; Dufresne TE; Cockman MD; Gross GJ; Sod EW; Myers WR; Combs KS; Higgins RE; Pierce SA; Stevens ML
    J Bone Miner Res; 2000 Sep; 15(9):1786-97. PubMed ID: 10976998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam-shell finite element models.
    Vanderoost J; Jaecques SV; Van der Perre G; Boonen S; D'hooge J; Lauriks W; van Lenthe GH
    J Biomech; 2011 May; 44(8):1566-72. PubMed ID: 21414627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On shear properties of trabecular bone under torsional loading: effects of bone marrow and strain rate.
    Kasra M; Grynpas MD
    J Biomech; 2007; 40(13):2898-903. PubMed ID: 17448478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering.
    Sandino C; Planell JA; Lacroix D
    J Biomech; 2008; 41(5):1005-14. PubMed ID: 18255075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of the effect of time-to-loading on peri-implant bone.
    Akça K; Eser A; Canay S
    Med Eng Phys; 2010 Jan; 32(1):7-13. PubMed ID: 19864171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations.
    Matsuura M; Eckstein F; Lochmüller EM; Zysset PK
    Biomech Model Mechanobiol; 2008 Feb; 7(1):27-42. PubMed ID: 17235622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical characterization of brain tissue in compression at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static and dynamic finite element analyses of an idealized structural model of vertebral trabecular bone.
    Kasra M; Grynpas MD
    J Biomech Eng; 1998 Apr; 120(2):267-72. PubMed ID: 10412389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures.
    Goda I; Ganghoffer JF
    J Mech Behav Biomed Mater; 2015 Nov; 51():99-118. PubMed ID: 26232945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical strength of trabecular bone at the knee.
    Hvid I
    Dan Med Bull; 1988 Aug; 35(4):345-65. PubMed ID: 3048922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.