BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22100221)

  • 1. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries.
    Zeng G; Deng X; Luo S; Luo X; Zou J
    J Hazard Mater; 2012 Jan; 199-200():164-9. PubMed ID: 22100221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria.
    Xin B; Zhang D; Zhang X; Xia Y; Wu F; Chen S; Li L
    Bioresour Technol; 2009 Dec; 100(24):6163-9. PubMed ID: 19656671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant.
    Li L; Ge J; Wu F; Chen R; Chen S; Wu B
    J Hazard Mater; 2010 Apr; 176(1-3):288-93. PubMed ID: 19954882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells.
    Liu Y; Shen J; Huang L; Wu D
    J Hazard Mater; 2013 Nov; 262():1-8. PubMed ID: 24007993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of reduced iron species for promoting Li and Co recovery from spent LiCoO
    Liao X; Ye M; Liang J; Guan Z; Li S; Deng Y; Gan Q; Liu Z; Fang X; Sun S
    Sci Total Environ; 2022 Jul; 830():154577. PubMed ID: 35304146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries.
    Sun L; Qiu K
    J Hazard Mater; 2011 Oct; 194():378-84. PubMed ID: 21872390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries.
    Sun L; Qiu K
    Waste Manag; 2012 Aug; 32(8):1575-82. PubMed ID: 22534072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni-Cd batteries.
    Velgosová O; Kaduková J; Marcinčáková R; Palfy P; Trpčevská J
    Waste Manag; 2013 Feb; 33(2):456-61. PubMed ID: 23131752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes.
    Xue XY; Yuan S; Xing LL; Chen ZH; He B; Chen YJ
    Chem Commun (Camb); 2011 Apr; 47(16):4718-20. PubMed ID: 21412563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete bioleaching of Co and Ni from spent batteries by a novel silver ion catalyzed process.
    Noruzi F; Nasirpour N; Vakilchap F; Mousavi SM
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5301-5316. PubMed ID: 35838790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration.
    Niu Z; Zou Y; Xin B; Chen S; Liu C; Li Y
    Chemosphere; 2014 Aug; 109():92-8. PubMed ID: 24873712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries.
    Li L; Ge J; Chen R; Wu F; Chen S; Zhang X
    Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism underlying the bioleaching process of LiCoO
    Wu W; Liu X; Zhang X; Li X; Qiu Y; Zhu M; Tan W
    J Biosci Bioeng; 2019 Sep; 128(3):344-354. PubMed ID: 31014562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile solvothermal synthesis of mesoporous Cu₂SnS₃ spheres and their application in lithium-ion batteries.
    Qu B; Zhang M; Lei D; Zeng Y; Chen Y; Chen L; Li Q; Wang Y; Wang T
    Nanoscale; 2011 Sep; 3(9):3646-51. PubMed ID: 21792405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined recovery process of metals in spent lithium-ion batteries.
    Li J; Shi P; Wang Z; Chen Y; Chang CC
    Chemosphere; 2009 Nov; 77(8):1132-6. PubMed ID: 19775724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10.
    Niu Z; Huang Q; Wang J; Yang Y; Xin B; Chen S
    J Hazard Mater; 2015 Nov; 298():170-7. PubMed ID: 26057441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly reversible lithium storage in Bacillus subtilis -directed porous Co₃O₄ nanostructures.
    Shim HW; Jin YH; Seo SD; Lee SH; Kim DW
    ACS Nano; 2011 Jan; 5(1):443-9. PubMed ID: 21155558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism.
    Wang Y; Zhou H
    Chem Commun (Camb); 2010 Sep; 46(34):6305-7. PubMed ID: 20668776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries.
    Nayaka GP; Pai KV; Manjanna J; Keny SJ
    Waste Manag; 2016 May; 51():234-238. PubMed ID: 26709049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.