These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22100221)

  • 21. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries.
    Moazzam P; Boroumand Y; Rabiei P; Baghbaderani SS; Mokarian P; Mohagheghian F; Mohammed LJ; Razmjou A
    Chemosphere; 2021 Aug; 277():130196. PubMed ID: 33784558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogenetically divergent bacteria consortium from neutral activated sludge showed heightened potential on bioleaching spent lithium-ion batteries.
    Cai X; Tian L; Chen C; Huang W; Yu Y; Liu C; Yang B; Lu X; Mao Y
    Ecotoxicol Environ Saf; 2021 Oct; 223():112592. PubMed ID: 34364128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system.
    Peng C; Hamuyuni J; Wilson BP; Lundström M
    Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, characterization and photocatalytic properties of nanostructured CoFe
    Moura MN; Barrada RV; Almeida JR; Moreira TFM; Schettino MA; Freitas JCC; Ferreira SAD; Lelis MFF; Freitas MBJG
    Chemosphere; 2017 Sep; 182():339-347. PubMed ID: 28505575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans.
    Choi MS; Cho KS; Kim DS; Kim DJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(11-12):2973-82. PubMed ID: 15533017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture.
    Wang J; Bai J; Xu J; Liang B
    J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tolerance of three fungal species to lithium and cobalt: Implications for bioleaching of spent rechargeable Li-ion batteries.
    Lobos A; Harwood VJ; Scott KM; Cunningham JA
    J Appl Microbiol; 2021 Aug; 131(2):743-755. PubMed ID: 33251646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical process for electrode material of spent lithium ion batteries.
    Prabaharan G; Barik SP; Kumar N; Kumar L
    Waste Manag; 2017 Oct; 68():527-533. PubMed ID: 28711181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioleaching of spent Ni-Cd batteries by continuous flow system: effect of hydraulic retention time and process load.
    Zhao L; Yang D; Zhu NW
    J Hazard Mater; 2008 Dec; 160(2-3):648-54. PubMed ID: 18430515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration.
    Xin B; Jiang W; Aslam H; Zhang K; Liu C; Wang R; Wang Y
    Bioresour Technol; 2012 Feb; 106():147-53. PubMed ID: 22204887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2016 May; 51():239-244. PubMed ID: 26965214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [100] Directed Cu-doped h-CoO nanorods: elucidation of the growth mechanism and application to lithium-ion batteries.
    Nam KM; Choi YC; Jung SC; Kim YI; Jo MR; Park SH; Kang YM; Han YK; Park JT
    Nanoscale; 2012 Jan; 4(2):473-7. PubMed ID: 22095097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system.
    Fu Y; He Y; Qu L; Feng Y; Li J; Liu J; Zhang G; Xie W
    Waste Manag; 2019 Apr; 88():191-199. PubMed ID: 31079631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes.
    Nam KT; Kim DW; Yoo PJ; Chiang CY; Meethong N; Hammond PT; Chiang YM; Belcher AM
    Science; 2006 May; 312(5775):885-8. PubMed ID: 16601154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone.
    Jha MK; Kumari A; Jha AK; Kumar V; Hait J; Pandey BD
    Waste Manag; 2013 Sep; 33(9):1890-7. PubMed ID: 23773705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research progress on bioleaching recovery technology of spent lithium-ion batteries.
    Li J; Zhang H; Wang H; Zhang B
    Environ Res; 2023 Dec; 238(Pt 1):117145. PubMed ID: 37716384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries.
    Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of metal bioleaching from contaminated sediment using silver ion.
    Chen SY; Lin JG
    J Hazard Mater; 2009 Jan; 161(2-3):893-9. PubMed ID: 18514400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of nano-sized graphite-supported CuO and Cu-Sn as active materials in lithium ion batteries.
    Jung DW; Jeong JH; Kong BS; Lee JK; Oh ES
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3317-21. PubMed ID: 22849115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accessing copper oxidation states of dissolved negative electrode current collectors in lithium ion batteries.
    Hanf L; Diehl M; Kemper LS; Winter M; Nowak S
    Electrophoresis; 2020 Oct; 41(18-19):1568-1575. PubMed ID: 32640093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.