These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22100237)

  • 1. Empirical characterisation and mathematical modelling of settlement in composting batch reactors.
    Illa J; Prenafeta-Boldú FX; Bonmatí A; Flotats X
    Bioresour Technol; 2012 Jan; 104():451-8. PubMed ID: 22100237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of aeration rate on nitrogen dynamics during composting.
    de Guardia A; Petiot C; Rogeau D; Druilhe C
    Waste Manag; 2008; 28(3):575-87. PubMed ID: 17826974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of organic matter degradation and microbial community during thermophilic composting of two different types of anaerobic sludge.
    Nakasaki K; Tran le TH; Idemoto Y; Abe M; Rollon AP
    Bioresour Technol; 2009 Jan; 100(2):676-82. PubMed ID: 18762416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composting in small laboratory pilots: performance and reproducibility.
    Lashermes G; Barriuso E; Le Villio-Poitrenaud M; Houot S
    Waste Manag; 2012 Feb; 32(2):271-7. PubMed ID: 21982279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modelling of the composting process: a review.
    Mason IG
    Waste Manag; 2006; 26(1):3-21. PubMed ID: 15927459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of organic matter dynamics during the composting process.
    Zhang Y; Lashermes G; Houot S; Doublet J; Steyer JP; Zhu YG; Barriuso E; Garnier P
    Waste Manag; 2012 Jan; 32(1):19-30. PubMed ID: 21978424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring the biological activity of the composting process: Oxygen uptake rate (OUR), respirometric index (RI), and respiratory quotient (RQ).
    Gea T; Barrena R; Artola A; Sánchez A
    Biotechnol Bioeng; 2004 Nov; 88(4):520-7. PubMed ID: 15459907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of aeration rate and kinetics of composting some agricultural wastes.
    Kulcu R; Yaldiz O
    Bioresour Technol; 2004 May; 93(1):49-57. PubMed ID: 14987720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composting under controlled conditions.
    Cronjé A; Turner C; Williams A; Barker A; Guy S
    Environ Technol; 2003 Oct; 24(10):1221-34. PubMed ID: 14669802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative biodegradation of dissolved organic matter during composting.
    Said-Pullicino D; Gigliotti G
    Chemosphere; 2007 Jun; 68(6):1030-40. PubMed ID: 17376503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of free air space on microbial kinetics in passively aerated compost.
    Yu S; Clark OG; Leonard JJ
    Bioresour Technol; 2009 Jan; 100(2):782-90. PubMed ID: 18710800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pile settlement and volume reduction measurement during forced-aeration static composting.
    Yue B; Chen TB; Gao D; Zheng GD; Liu B; Lee DJ
    Bioresour Technol; 2008 Nov; 99(16):7450-7. PubMed ID: 18400494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous removal of organic matter and nitrogen compounds by combining a membrane bioreactor and a membrane biofilm reactor.
    Hasar H
    Bioresour Technol; 2009 May; 100(10):2699-705. PubMed ID: 19186053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UASB reactor hydrodynamics: residence time distribution and proposed modelling tools.
    López I; Borzacconi L
    Environ Technol; 2010 May; 31(6):591-600. PubMed ID: 20540420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of ADM1 model to a full-scale anaerobic digester under dynamic organic loading conditions.
    Ozkan-Yucel UG; Gökçay CF
    Environ Technol; 2010 May; 31(6):633-40. PubMed ID: 20540425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor.
    Kleerebezem R; Beckers J; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 2005 Jul; 91(2):169-79. PubMed ID: 15889396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting biodegradable volatile solids degradation profiles in the composting process.
    Mason IG
    Waste Manag; 2009 Feb; 29(2):559-69. PubMed ID: 18572400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical model for carbon dioxide evolution from the thermophilic composting of synthetic food wastes made of dog food.
    Chang JI; Tsai JJ; Wu KH
    Waste Manag; 2005; 25(10):1037-45. PubMed ID: 16243230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A respirometric method for characterising the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be co-composted.
    Tremier A; De Guardia A; Massiani C; Paul E; Martel JL
    Bioresour Technol; 2005 Jan; 96(2):169-80. PubMed ID: 15381213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.