These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22100440)

  • 1. A physical mechanism to explain the delivery of chemical penetration enhancers into skin during transdermal sonophoresis - Insight into the observed synergism.
    Polat BE; Deen WM; Langer R; Blankschtein D
    J Control Release; 2012 Mar; 158(2):250-60. PubMed ID: 22100440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate.
    Polat BE; Figueroa PL; Blankschtein D; Langer R
    J Pharm Sci; 2011 Feb; 100(2):512-29. PubMed ID: 20740667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport.
    Tang H; Wang CC; Blankschtein D; Langer R
    Pharm Res; 2002 Aug; 19(8):1160-9. PubMed ID: 12240942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental demonstration of the existence of highly permeable localized transport regions in low-frequency sonophoresis.
    Kushner J; Blankschtein D; Langer R
    J Pharm Sci; 2004 Nov; 93(11):2733-45. PubMed ID: 15389675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the aqueous porous pathway model to quantify the effect of sodium lauryl sulfate on ultrasound-induced skin structural perturbation.
    Polat BE; Seto JE; Blankschtein D; Langer R
    J Pharm Sci; 2011 Apr; 100(4):1387-97. PubMed ID: 20963845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of sonophoresis and chemical penetration enhancers on percutaneous transport of penbutolol sulfate.
    Ita KB; Popova IE
    Pharm Dev Technol; 2016 Dec; 21(8):990-995. PubMed ID: 26383739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design principles of chemical penetration enhancers for transdermal drug delivery.
    Karande P; Jain A; Ergun K; Kispersky V; Mitragotri S
    Proc Natl Acad Sci U S A; 2005 Mar; 102(13):4688-93. PubMed ID: 15774584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium dodecyl sulfate improved stability and transdermal delivery of salidroside-encapsulated niosomes via effects on zeta potential.
    Zhang Y; Jing Q; Hu H; He Z; Wu T; Guo T; Feng N
    Int J Pharm; 2020 Apr; 580():119183. PubMed ID: 32112930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Sensitivity of In Vitro Permeation Tests to Chemical Penetration Enhancer Concentration Changes in Fentanyl Transdermal Delivery Systems.
    Shin SH; Srivilai J; Ibrahim SA; Strasinger C; Hammell DC; Hassan HE; Stinchcomb AL
    AAPS PharmSciTech; 2018 Oct; 19(7):2778-2786. PubMed ID: 30084070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect and Mechanism of Transdermal Penetration Enhancement of Fu's Cupping Therapy: New Physical Penetration Technology for Transdermal Administration with Traditional Chinese Medicine (TCM) Characteristics.
    Xie WJ; Zhang YP; Xu J; Sun XB; Yang FF
    Molecules; 2017 Mar; 22(4):. PubMed ID: 28346390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular perspective of efficiency and safety problems of chemical enhancers: bottlenecks and recent advances.
    Zeng L; Huang F; Zhang Q; Liu J; Quan D; Song W
    Drug Deliv Transl Res; 2022 Jun; 12(6):1376-1394. PubMed ID: 34476765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of low-frequency ultrasound on the transdermal permeation of mannitol: comparative studies with in vivo and in vitro skin.
    Tang H; Blankschtein D; Langer R
    J Pharm Sci; 2002 Aug; 91(8):1776-94. PubMed ID: 12115805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of different enhancers on the transdermal permeation of insulin analog.
    Yerramsetty KM; Rachakonda VK; Neely BJ; Madihally SV; Gasem KA
    Int J Pharm; 2010 Oct; 398(1-2):83-92. PubMed ID: 20667506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of improved permeation enhancers for transdermal drug delivery.
    Godavarthy SS; Yerramsetty KM; Rachakonda VK; Neely BJ; Madihally SV; Robinson RL; Gasem KA
    J Pharm Sci; 2009 Nov; 98(11):4085-99. PubMed ID: 19697392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of topical laurocapram (Azone) on the in vitro percutaneous permeation of sodium lauryl sulfate using human skin.
    Szolar-Platzer C; Patil S; Maibach HI
    Acta Derm Venereol; 1996 May; 76(3):182-5. PubMed ID: 8800295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical description of transdermal transport of hydrophilic permeants: application to low-frequency sonophoresis.
    Tang H; Mitragotri S; Blankschtein D; Langer R
    J Pharm Sci; 2001 May; 90(5):545-68. PubMed ID: 11288100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of microjet vs shock wave formation in sonophoresis.
    Wolloch L; Kost J
    J Control Release; 2010 Dec; 148(2):204-11. PubMed ID: 20655341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microneedle system: a modulated approach for penetration enhancement.
    Khare N; Shende P
    Drug Dev Ind Pharm; 2021 Aug; 47(8):1183-1192. PubMed ID: 34634991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs.
    Polat BE; Blankschtein D; Langer R
    Expert Opin Drug Deliv; 2010 Dec; 7(12):1415-32. PubMed ID: 21118031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A skin permeability model of insulin in the presence of chemical penetration enhancer.
    Yerramsetty KM; Neely BJ; Madihally SV; Gasem KA
    Int J Pharm; 2010 Mar; 388(1-2):13-23. PubMed ID: 20026200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.