BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22100551)

  • 61. Vortex counter-current chromatography.
    Ito Y; Ma Z; Clary R; Powell J; Knight M; Finn TM
    J Chromatogr A; 2011 Sep; 1218(36):6165-72. PubMed ID: 21056421
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Toroidal coil counter-current chromatography. Achievement of high resolution by optimizing flow-rate, rotation speed, sample volume and tube length.
    Matsuda K; Matsuda S; Ito Y
    J Chromatogr A; 1998 May; 808(1-2):95-104. PubMed ID: 9652111
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Normal-phase high-performance counter-current chromatography for the fractionation of dissolved organic matter from a freshwater source.
    Sandron S; Nesterenko PN; McCaul MV; Kelleher B; Paull B
    J Sep Sci; 2014 Jan; 37(1-2):135-42. PubMed ID: 24243884
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sample capacity in preparative high-speed counter-current chromatography.
    Zhao CX; He CH
    J Chromatogr A; 2007 Apr; 1146(2):186-92. PubMed ID: 17303145
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Performance comparison using the GUESS mixture to evaluate counter-current chromatography instruments.
    Guzlek H; Wood PL; Janaway L
    J Chromatogr A; 2009 May; 1216(19):4181-6. PubMed ID: 19344911
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Investigation, comparison and design of chambers used in centrifugal partition chromatography on the basis of flow pattern and separation experiments.
    Schwienheer C; Merz J; Schembecker G
    J Chromatogr A; 2015 Apr; 1390():39-49. PubMed ID: 25766495
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Industrial countercurrent chromatography separations based on a cascade of centrifugal mixer-settler extractors.
    Kostanyan AE; Erastov AA
    J Chromatogr A; 2018 Oct; 1572():212-216. PubMed ID: 30150115
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems.
    Shinomiya K; Sato K; Yoshida K; Tokura K; Maruyama H; Yanagidaira K; Ito Y
    J Chromatogr A; 2013 Dec; 1322():74-80. PubMed ID: 24267319
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Using the liquid nature of the stationary phase in countercurrent chromatography. IV. The cocurrent CCC method.
    Berthod A; Hassoun M
    J Chromatogr A; 2006 May; 1116(1-2):143-8. PubMed ID: 16584744
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Preparative separation and purification of squalene from the microalga Thraustochytrium ATCC 26185 by high-speed counter-current chromatography.
    Lu HT; Jiang Y; Chen F
    J Chromatogr A; 2003 Apr; 994(1-2):37-43. PubMed ID: 12779217
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Multiple dual-mode centrifugal partition chromatography, a semi-continuous development mode for routine laboratory-scale purifications.
    Delannay E; Toribio A; Boudesocque L; Nuzillard JM; Zèches-Hanrot M; Dardennes E; Le Dour G; Sapi J; Renault JH
    J Chromatogr A; 2006 Sep; 1127(1-2):45-51. PubMed ID: 16806250
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The separation of flavonoids from Pongamia pinnata using combination columns in high-speed counter-current chromatography with a three-phase solvent system.
    Yin H; Zhang S; Long L; Yin H; Tian X; Luo X; Nan H; He S
    J Chromatogr A; 2013 Nov; 1315():80-5. PubMed ID: 24090596
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency.
    Englert M; Vetter W
    Anal Chim Acta; 2015 Jul; 884():114-23. PubMed ID: 26073817
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Solvent gradient elution for comprehensive separation of constituents with wide range of polarity in Apocynum venetum leaves by high-speed counter-current chromatography.
    Zhang Y; Liu C; Zhang Z; Qi Y; Wu G; Li S
    J Sep Sci; 2010 Sep; 33(17-18):2743-8. PubMed ID: 20730835
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Partition efficiencies of three different coiled columns for the coil satellite centrifuge at higher rotation speed combinations.
    Shinomiya K; Zaima K; Yasue M; Honda R; Sakuma Y; Harikai N; Tokura K; Ito Y
    J Chromatogr A; 2019 Jul; 1596():134-141. PubMed ID: 30862407
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Characterization of capillary-channeled polymer fiber stationary phases for high-performance liquid chromatography protein separations: Comparative analysis with a packed-bed column.
    Nelson DM; Marcus RK
    Anal Chem; 2006 Dec; 78(24):8462-71. PubMed ID: 17165840
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Preparative separation of atropine and scopolamine from Daturae metelis Flos using pH-zone-refining counter-current chromatography with counter-rotation and dual-mode elution procedure.
    He Y; Luo J; Kong L
    J Sep Sci; 2011 Apr; 34(7):806-11. PubMed ID: 21387559
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Improved spiral disk assembly for high-speed counter-current chromatography.
    Ito Y; Yang F; Fitze P; Powell J; Ide D
    J Chromatogr A; 2003 Oct; 1017(1-2):71-81. PubMed ID: 14584692
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Spiral counter-current chromatography of small molecules, peptides and proteins using the spiral tubing support rotor.
    Knight M; Finn TM; Zehmer J; Clayton A; Pilon A
    J Chromatogr A; 2011 Sep; 1218(36):6148-55. PubMed ID: 21741049
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification.
    Ito Y; Ma X; Clary R
    Curr Chromatogr; 2016; 3(2):129-135. PubMed ID: 27818942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.