These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 221006)

  • 21. Thermolysis of coenzymes B12 at physiological temperatures: activation parameters for cobalt-carbon bond homolysis and a quantitative analysis of the perturbation of the homolysis equilibrium by the ribonucleoside triphosphate reductase from Lactobacillus leichmannii.
    Brown KL; Zou X
    J Inorg Biochem; 1999; 77(3-4):185-95. PubMed ID: 10643658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of the Cob(II)alamin-5'-deoxy-3',4'-anhydroadenosyl radical triplet spin system in the active site of diol dehydrase.
    Mansoorabadi SO; Magnusson OT; Poyner RR; Frey PA; Reed GH
    Biochemistry; 2006 Dec; 45(48):14362-70. PubMed ID: 17128975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The synthesis and properties of four spin-labeled analogs of adenosylcobalamin.
    Anton DL; Tsai PK; Hogenkamp HP
    J Biol Chem; 1980 May; 255(10):4507-10. PubMed ID: 6246074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning, sequencing, and expression of the adenosylcobalamin-dependent ribonucleotide reductase from Lactobacillus leichmannii.
    Booker S; Stubbe J
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8352-6. PubMed ID: 8397403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer.
    Sintchak MD; Arjara G; Kellogg BA; Stubbe J; Drennan CL
    Nat Struct Biol; 2002 Apr; 9(4):293-300. PubMed ID: 11875520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on the catalysis of carbon-cobalt bond homolysis by ribonucleoside triphosphate reductase: evidence for concerted carbon-cobalt bond homolysis and thiyl radical formation.
    Licht SS; Booker S; Stubbe J
    Biochemistry; 1999 Jan; 38(4):1221-33. PubMed ID: 9930982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanism of Lactobacillus leichmannii ribonucleotide reductase. Evidence for 3' carbon-hydrogen bond cleavage and a unique role for coenzyme B12.
    Ashley GW; Harris G; Stubbe J
    J Biol Chem; 1986 Mar; 261(9):3958-64. PubMed ID: 3512563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adenosylcobalamin analogues as inhibitors of ribonucleotide reductase and vitamin B12 transport.
    Jacobsen DW; DiGirolamo PM; Huennekens FM
    Mol Pharmacol; 1975 Mar; 11(2):174-84. PubMed ID: 1168310
    [No Abstract]   [Full Text] [Related]  

  • 29. The B12-dependent ribonucleotide reductase from the archaebacterium Thermoplasma acidophila: an evolutionary solution to the ribonucleotide reductase conundrum.
    Tauer A; Benner SA
    Proc Natl Acad Sci U S A; 1997 Jan; 94(1):53-8. PubMed ID: 8990160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the mechanism of ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Evidence for 3' C--H bond cleavage.
    Stubbe J; Ackles D; Segal R; Blakley RL
    J Biol Chem; 1981 May; 256(10):4843-6. PubMed ID: 7014560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cobamides and ribonucleotide reduction. VII. Cob(II)alamin as a sensitive probe for the active center of ribonucleotide reductase.
    Hamilton JA; Yamada R; Blakley RL; Hogenkamp HP; Looney FD; Winfield ME
    Biochemistry; 1971 Jan; 10(2):347-55. PubMed ID: 4321664
    [No Abstract]   [Full Text] [Related]  

  • 32. Microbiological activities of nucleotide loop-modified analogues of vitamin B12.
    Ishida A; Kanefusa H; Fujita H; Toraya T
    Arch Microbiol; 1994; 161(4):293-9. PubMed ID: 8002712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic and kinetic studies on carbon-cobalt bond homolysis by ribonucleoside triphosphate reductase: the importance of entropy in catalysis.
    Licht SS; Lawrence CC; Stubbe J
    Biochemistry; 1999 Jan; 38(4):1234-42. PubMed ID: 9930983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 2'-Deoxy-2'-halonucleotides as alternate substrates and mechanism-based inactivators of Lactobacillus leichmannii ribonucleotide reductase.
    Harris G; Ashley GW; Robins MJ; Tolman RL; Stubbe J
    Biochemistry; 1987 Apr; 26(7):1895-902. PubMed ID: 3297135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An affinity adsorbent containing deoxyguanosine 5'-triphosphate linked to sepharose and its use for large scale preparation of ribonucleotide reductase of Lactobacillus leichmannii.
    Hoffmann PJ; Blakley RL
    Biochemistry; 1975 Nov; 14(22):4804-12. PubMed ID: 241389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ribonucleoside triphosphate reductase from Lactobacillus leichmannii.
    Blakley RL
    Methods Enzymol; 1978; 51():246-59. PubMed ID: 692388
    [No Abstract]   [Full Text] [Related]  

  • 37. 5'-Peroxyadenosine and 5'-peroxyadenosylcobalamin as intermediates in the aerobic photolysis of adenosylcobalamin.
    Schwartz PA; Frey PA
    Biochemistry; 2007 Jun; 46(24):7284-92. PubMed ID: 17503776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allosterism, regulation and cooperativity: the case of ribonucleotide reductase of Lactobacillus leichmannii.
    Singh D; Tamao Y; Blakley RL
    Adv Enzyme Regul; 1976; 15():81-100. PubMed ID: 1030188
    [No Abstract]   [Full Text] [Related]  

  • 39. Mechanism of B12-dependent ribonucleotide reductase.
    Stubbe JA
    Mol Cell Biochem; 1983; 50(1):25-45. PubMed ID: 6341812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The tyrosyl free radical in ribonucleotide reductase.
    Gräslund A; Sahlin M; Sjöberg BM
    Environ Health Perspect; 1985 Dec; 64():139-49. PubMed ID: 3007085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.