These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 22101004)
21. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury. Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203 [TBL] [Abstract][Full Text] [Related]
22. The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: generation of bipotential oligodendrocyte-type-2 astrocyte progenitor cells and dorsal-ventral differences in GRP cell function. Gregori N; Pröschel C; Noble M; Mayer-Pröschel M J Neurosci; 2002 Jan; 22(1):248-56. PubMed ID: 11756508 [TBL] [Abstract][Full Text] [Related]
23. Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration. Khankan RR; Griffis KG; Haggerty-Skeans JR; Zhong H; Roy RR; Edgerton VR; Phelps PE J Neurosci; 2016 Jun; 36(23):6269-86. PubMed ID: 27277804 [TBL] [Abstract][Full Text] [Related]
24. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. Cao Q; Xu XM; Devries WH; Enzmann GU; Ping P; Tsoulfas P; Wood PM; Bunge MB; Whittemore SR J Neurosci; 2005 Jul; 25(30):6947-57. PubMed ID: 16049170 [TBL] [Abstract][Full Text] [Related]
25. Immature type-1 astrocytes suppress glial scar formation, are motile and interact with blood vessels. Smith GM; Miller RH Brain Res; 1991 Mar; 543(1):111-22. PubMed ID: 2054666 [TBL] [Abstract][Full Text] [Related]
26. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats. Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959 [TBL] [Abstract][Full Text] [Related]
27. Transplanting neural progenitors into a complete transection model of spinal cord injury. Medalha CC; Jin Y; Yamagami T; Haas C; Fischer I J Neurosci Res; 2014 May; 92(5):607-18. PubMed ID: 24452691 [TBL] [Abstract][Full Text] [Related]
28. Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury. Pfeifer K; Vroemen M; Blesch A; Weidner N Eur J Neurosci; 2004 Oct; 20(7):1695-704. PubMed ID: 15379990 [TBL] [Abstract][Full Text] [Related]
29. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors. Yoo S; Wrathall JR Dev Neurobiol; 2007 Jun; 67(7):860-74. PubMed ID: 17506499 [TBL] [Abstract][Full Text] [Related]
30. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury. Davies SJ; Shih CH; Noble M; Mayer-Proschel M; Davies JE; Proschel C PLoS One; 2011 Mar; 6(3):e17328. PubMed ID: 21407803 [TBL] [Abstract][Full Text] [Related]
31. Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Barakat DJ; Gaglani SM; Neravetla SR; Sanchez AR; Andrade CM; Pressman Y; Puzis R; Garg MS; Bunge MB; Pearse DD Cell Transplant; 2005; 14(4):225-40. PubMed ID: 15929557 [TBL] [Abstract][Full Text] [Related]
32. Changing role of forebrain astrocytes during development, regenerative failure, and induced regeneration upon transplantation. Smith GM; Miller RH; Silver J J Comp Neurol; 1986 Sep; 251(1):23-43. PubMed ID: 3760257 [TBL] [Abstract][Full Text] [Related]
33. Tanycytes transplanted into the adult rat spinal cord support the regeneration of lesioned axons. Prieto M; Chauvet N; Alonso G Exp Neurol; 2000 Jan; 161(1):27-37. PubMed ID: 10683271 [TBL] [Abstract][Full Text] [Related]
34. EphA4 Obstructs Spinal Cord Neuron Regeneration by Promoting Excessive Activation of Astrocytes. Chen X; Zhang L; Hua F; Zhuang Y; Liu H; Wang S Cell Mol Neurobiol; 2022 Jul; 42(5):1557-1568. PubMed ID: 33595805 [TBL] [Abstract][Full Text] [Related]
35. A tripotential glial precursor cell is present in the developing spinal cord. Rao MS; Noble M; Mayer-Pröschel M Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3996-4001. PubMed ID: 9520481 [TBL] [Abstract][Full Text] [Related]
36. BMP and LIF signaling coordinately regulate lineage restriction of radial glia in the developing forebrain. Li H; Grumet M Glia; 2007 Jan; 55(1):24-35. PubMed ID: 17001659 [TBL] [Abstract][Full Text] [Related]
37. Transplantation of D15A-expressing glial-restricted-precursor-derived astrocytes improves anatomical and locomotor recovery after spinal cord injury. Fan C; Zheng Y; Cheng X; Qi X; Bu P; Luo X; Kim DH; Cao Q Int J Biol Sci; 2013; 9(1):78-93. PubMed ID: 23289019 [TBL] [Abstract][Full Text] [Related]
38. CNTF induces GFAP in a S-100 alpha brain cell population: the pattern of CNTF-alpha R suggests an indirect mode of action. Kahn MA; Ellison JA; Chang RP; Speight GJ; de Vellis J Brain Res Dev Brain Res; 1997 Feb; 98(2):221-33. PubMed ID: 9051264 [TBL] [Abstract][Full Text] [Related]
39. The importance of transgene and cell type on the regeneration of adult retinal ganglion cell axons within reconstituted bridging grafts. Hu Y; Arulpragasam A; Plant GW; Hendriks WT; Cui Q; Harvey AR Exp Neurol; 2007 Oct; 207(2):314-28. PubMed ID: 17689533 [TBL] [Abstract][Full Text] [Related]
40. A potential role for bone morphogenetic protein signalling in glial cell fate determination following adult central nervous system injury in vivo. Hampton DW; Asher RA; Kondo T; Steeves JD; Ramer MS; Fawcett JW Eur J Neurosci; 2007 Dec; 26(11):3024-35. PubMed ID: 18028109 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]