These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
593 related articles for article (PubMed ID: 22101153)
1. PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Jones DT; Buchan DW; Cozzetto D; Pontil M Bioinformatics; 2012 Jan; 28(2):184-90. PubMed ID: 22101153 [TBL] [Abstract][Full Text] [Related]
2. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Jones DT; Singh T; Kosciolek T; Tetchner S Bioinformatics; 2015 Apr; 31(7):999-1006. PubMed ID: 25431331 [TBL] [Abstract][Full Text] [Related]
3. COUSCOus: improved protein contact prediction using an empirical Bayes covariance estimator. Rawi R; Mall R; Kunji K; El Anbari M; Aupetit M; Ullah E; Bensmail H BMC Bioinformatics; 2016 Dec; 17(1):533. PubMed ID: 27978812 [TBL] [Abstract][Full Text] [Related]
4. PconsC: combination of direct information methods and alignments improves contact prediction. Skwark MJ; Abdel-Rehim A; Elofsson A Bioinformatics; 2013 Jul; 29(14):1815-6. PubMed ID: 23658418 [TBL] [Abstract][Full Text] [Related]
5. Improving residue-residue contact prediction via low-rank and sparse decomposition of residue correlation matrix. Zhang H; Gao Y; Deng M; Wang C; Zhu J; Li SC; Zheng WM; Bu D Biochem Biophys Res Commun; 2016 Mar; 472(1):217-22. PubMed ID: 26920058 [TBL] [Abstract][Full Text] [Related]
6. Improving accuracy of protein contact prediction using balanced network deconvolution. Sun HP; Huang Y; Wang XF; Zhang Y; Shen HB Proteins; 2015 Mar; 83(3):485-96. PubMed ID: 25524593 [TBL] [Abstract][Full Text] [Related]
7. H2rs: deducing evolutionary and functionally important residue positions by means of an entropy and similarity based analysis of multiple sequence alignments. Janda JO; Popal A; Bauer J; Busch M; Klocke M; Spitzer W; Keller J; Merkl R BMC Bioinformatics; 2014 Apr; 15():118. PubMed ID: 24766829 [TBL] [Abstract][Full Text] [Related]
8. KScons: a Bayesian approach for protein residue contact prediction using the knob-socket model of protein tertiary structure. Li Q; Dahl DB; Vannucci M; Joo H; Tsai JW Bioinformatics; 2016 Dec; 32(24):3774-3781. PubMed ID: 27559156 [TBL] [Abstract][Full Text] [Related]
9. De novo structure prediction of globular proteins aided by sequence variation-derived contacts. Kosciolek T; Jones DT PLoS One; 2014; 9(3):e92197. PubMed ID: 24637808 [TBL] [Abstract][Full Text] [Related]
10. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Jones DT; Kandathil SM Bioinformatics; 2018 Oct; 34(19):3308-3315. PubMed ID: 29718112 [TBL] [Abstract][Full Text] [Related]
12. Predicting protein β-sheet contacts using a maximum entropy-based correlated mutation measure. Burkoff NS; Várnai C; Wild DL Bioinformatics; 2013 Mar; 29(5):580-7. PubMed ID: 23314126 [TBL] [Abstract][Full Text] [Related]
13. FreeContact: fast and free software for protein contact prediction from residue co-evolution. Kaján L; Hopf TA; Kalaš M; Marks DS; Rost B BMC Bioinformatics; 2014 Mar; 15():85. PubMed ID: 24669753 [TBL] [Abstract][Full Text] [Related]
14. Measuring the distance between multiple sequence alignments. Blackburne BP; Whelan S Bioinformatics; 2012 Feb; 28(4):495-502. PubMed ID: 22199391 [TBL] [Abstract][Full Text] [Related]
16. Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information. Buslje CM; Santos J; Delfino JM; Nielsen M Bioinformatics; 2009 May; 25(9):1125-31. PubMed ID: 19276150 [TBL] [Abstract][Full Text] [Related]
17. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Dunn SD; Wahl LM; Gloor GB Bioinformatics; 2008 Feb; 24(3):333-40. PubMed ID: 18057019 [TBL] [Abstract][Full Text] [Related]
18. DNCON2_Inter: predicting interchain contacts for homodimeric and homomultimeric protein complexes using multiple sequence alignments of monomers and deep learning. Quadir F; Roy RS; Halfmann R; Cheng J Sci Rep; 2021 Jun; 11(1):12295. PubMed ID: 34112907 [TBL] [Abstract][Full Text] [Related]
19. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks. Li Y; Hu J; Zhang C; Yu DJ; Zhang Y Bioinformatics; 2019 Nov; 35(22):4647-4655. PubMed ID: 31070716 [TBL] [Abstract][Full Text] [Related]
20. Using inferred residue contacts to distinguish between correct and incorrect protein models. Miller CS; Eisenberg D Bioinformatics; 2008 Jul; 24(14):1575-82. PubMed ID: 18511466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]