These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22101223)

  • 1. A varying-coefficient method for analyzing longitudinal clinical trials data with nonignorable dropout.
    Forster JE; MaWhinney S; Ball EL; Fairclough D
    Contemp Clin Trials; 2012 Mar; 33(2):378-85. PubMed ID: 22101223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout.
    Hogan JW; Lin X; Herman B
    Biometrics; 2004 Dec; 60(4):854-64. PubMed ID: 15606405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accounting for dropout reason in longitudinal studies with nonignorable dropout.
    Moore CM; MaWhinney S; Forster JE; Carlson NE; Allshouse A; Wang X; Routy JP; Conway B; Connick E
    Stat Methods Med Res; 2017 Aug; 26(4):1854-1866. PubMed ID: 26078357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian natural cubic B-spline varying coefficient method for non-ignorable dropout.
    Moore CM; MaWhinney S; Carlson NE; Kreidler S
    BMC Med Res Methodol; 2020 Oct; 20(1):250. PubMed ID: 33028226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling longitudinal data with nonignorable dropouts using a latent dropout class model.
    Roy J
    Biometrics; 2003 Dec; 59(4):829-36. PubMed ID: 14969461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general class of pattern mixture models for nonignorable dropout with many possible dropout times.
    Roy J; Daniels MJ
    Biometrics; 2008 Jun; 64(2):538-45. PubMed ID: 17900312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marginalized transition shared random effects models for longitudinal binary data with nonignorable dropout.
    Lee M; Lee K; Lee J
    Biom J; 2014 Mar; 56(2):230-42. PubMed ID: 24430985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches.
    Chan JS
    Biom J; 2016 May; 58(3):549-69. PubMed ID: 26467236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Varying-coefficient models for longitudinal processes with continuous-time informative dropout.
    Su L; Hogan JW
    Biostatistics; 2010 Jan; 11(1):93-110. PubMed ID: 19837655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of crossover designs with nonignorable dropout.
    Wang X; Chinchilli VM
    Stat Med; 2021 Jan; 40(1):64-84. PubMed ID: 33012039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled pattern imputation for sensitivity analysis of longitudinal binary and ordinal outcomes with nonignorable dropout.
    Tang Y
    Stat Med; 2018 Apr; 37(9):1467-1481. PubMed ID: 29333672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-effect hybrid models for longitudinal data with nonignorable dropout.
    Yuan Y; Little RJ
    Biometrics; 2009 Jun; 65(2):478-86. PubMed ID: 18759842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid model for nonignorable dropout in longitudinal binary responses.
    Wilkins KJ; Fitzmaurice GM
    Biometrics; 2006 Mar; 62(1):168-76. PubMed ID: 16542243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reparameterizing the pattern mixture model for sensitivity analyses under informative dropout.
    Daniels MJ; Hogan JW
    Biometrics; 2000 Dec; 56(4):1241-8. PubMed ID: 11129486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian quantile regression for longitudinal studies with nonignorable missing data.
    Yuan Y; Yin G
    Biometrics; 2010 Mar; 66(1):105-14. PubMed ID: 19459836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of crossover designs for longitudinal binary data with ignorable and nonignorable dropout.
    Wang X; Chinchilli VM
    Stat Methods Med Res; 2022 Jan; 31(1):119-138. PubMed ID: 34779672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BAYESIAN MODELING LONGITUDINAL DYADIC DATA WITH NONIGNORABLE DROPOUT, WITH APPLICATION TO A BREAST CANCER STUDY.
    Zhang G; Yuan Y
    Ann Appl Stat; 2012 Jun; 6(2):753-771. PubMed ID: 23814631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian Two-Part Tobit Models with Left-Censoring, Skewness, and Nonignorable Missingness.
    Dagne GA; Huang Y
    J Biopharm Stat; 2015; 25(4):714-30. PubMed ID: 24905924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint modeling of longitudinal data and informative dropout time in the presence of multiple changepoints.
    Ghosh P; Ghosh K; Tiwari RC
    Stat Med; 2011 Mar; 30(6):611-26. PubMed ID: 21337357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new Bayesian joint model for longitudinal count data with many zeros, intermittent missingness, and dropout with applications to HIV prevention trials.
    Wu J; Chen MH; Schifano ED; Ibrahim JG; Fisher JD
    Stat Med; 2019 Dec; 38(30):5565-5586. PubMed ID: 31691322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.