These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 22101223)
21. A marginalized conditional linear model for longitudinal binary data when informative dropout occurs in continuous time. Su L Biostatistics; 2012 Apr; 13(2):355-68. PubMed ID: 22133756 [TBL] [Abstract][Full Text] [Related]
22. A transitional model for longitudinal binary data subject to nonignorable missing data. Albert PS Biometrics; 2000 Jun; 56(2):602-8. PubMed ID: 10877323 [TBL] [Abstract][Full Text] [Related]
23. An exploration of fixed and random effects selection for longitudinal binary outcomes in the presence of nonignorable dropout. Li N; Daniels MJ; Li G; Elashoff RM Biom J; 2013 Jan; 55(1):17-37. PubMed ID: 23124889 [TBL] [Abstract][Full Text] [Related]
24. Bayesian inference from incomplete longitudinal data: a simple method to quantify sensitivity to nonignorable dropout. Xie H Stat Med; 2009 Sep; 28(22):2725-47. PubMed ID: 19572257 [TBL] [Abstract][Full Text] [Related]
25. Treatment effects in randomized longitudinal trials with different types of nonignorable dropout. Yang M; Maxwell SE Psychol Methods; 2014 Jun; 19(2):188-210. PubMed ID: 24079928 [TBL] [Abstract][Full Text] [Related]
26. A sensitivity analysis approach for informative dropout using shared parameter models. Su L; Li Q; Barrett JK; Daniels MJ Biometrics; 2019 Sep; 75(3):917-926. PubMed ID: 30666621 [TBL] [Abstract][Full Text] [Related]
27. Growth modeling with nonignorable dropout: alternative analyses of the STAR*D antidepressant trial. Muthén B; Asparouhov T; Hunter AM; Leuchter AF Psychol Methods; 2011 Mar; 16(1):17-33. PubMed ID: 21381817 [TBL] [Abstract][Full Text] [Related]
28. Estimating the distribution of nonterminal event time in the presence of mortality or informative dropout. Jiang H; Chappell R; Fine JP Control Clin Trials; 2003 Apr; 24(2):135-46. PubMed ID: 12689735 [TBL] [Abstract][Full Text] [Related]
29. Modelling placebo response in depression trials using a longitudinal model with informative dropout. Gomeni R; Lavergne A; Merlo-Pich E Eur J Pharm Sci; 2009 Jan; 36(1):4-10. PubMed ID: 19041717 [TBL] [Abstract][Full Text] [Related]
30. Bayesian latent-class mixed-effect hybrid models for dyadic longitudinal data with non-ignorable dropouts. Ahn J; Liu S; Wang W; Yuan Y Biometrics; 2013 Dec; 69(4):914-24. PubMed ID: 24328715 [TBL] [Abstract][Full Text] [Related]
31. A bias correction in testing treatment efficacy under informative dropout in clinical trials. Kong F; Chen YF; Jin K J Biopharm Stat; 2009 Nov; 19(6):980-1000. PubMed ID: 20183460 [TBL] [Abstract][Full Text] [Related]
32. Modelling and simulation of the Positive and Negative Syndrome Scale (PANSS) time course and dropout hazard in placebo arms of schizophrenia clinical trials. Pilla Reddy V; Kozielska M; Johnson M; Suleiman AA; Vermeulen A; Liu J; de Greef R; Groothuis GM; Danhof M; Proost JH Clin Pharmacokinet; 2012 Apr; 51(4):261-75. PubMed ID: 22420580 [TBL] [Abstract][Full Text] [Related]
33. Modelling variable dropout in randomised controlled trials with longitudinal outcomes: application to the MAGNETIC study. Kolamunnage-Dona R; Powell C; Williamson PR Trials; 2016 Apr; 17(1):222. PubMed ID: 27125779 [TBL] [Abstract][Full Text] [Related]
34. A bidimensional finite mixture model for longitudinal data subject to dropout. Spagnoli A; Marino MF; Alfò M Stat Med; 2018 Sep; 37(20):2998-3011. PubMed ID: 29873102 [TBL] [Abstract][Full Text] [Related]
35. Missing covariates in longitudinal data with informative dropouts: bias analysis and inference. Roy J; Lin X Biometrics; 2005 Sep; 61(3):837-46. PubMed ID: 16135036 [TBL] [Abstract][Full Text] [Related]
36. A random pattern mixture model for ordinal outcomes with informative dropouts. Liu C; Ratcliffe SJ; Guo W Stat Med; 2015 Jul; 34(16):2391-402. PubMed ID: 25894456 [TBL] [Abstract][Full Text] [Related]
37. Multiple imputation compared with some informative dropout procedures in the estimation and comparison of rates of change in longitudinal clinical trials with dropouts. Ali MW; Siddiqui O J Biopharm Stat; 2000 May; 10(2):165-81. PubMed ID: 10803723 [TBL] [Abstract][Full Text] [Related]
38. A flexible B-spline model for multiple longitudinal biomarkers and survival. Brown ER; Ibrahim JG; DeGruttola V Biometrics; 2005 Mar; 61(1):64-73. PubMed ID: 15737079 [TBL] [Abstract][Full Text] [Related]
39. Predictors of dropout from care among HIV-infected patients initiating antiretroviral therapy at a public sector HIV treatment clinic in sub-Saharan Africa. Asiimwe SB; Kanyesigye M; Bwana B; Okello S; Muyindike W BMC Infect Dis; 2016 Feb; 16():43. PubMed ID: 26832737 [TBL] [Abstract][Full Text] [Related]
40. Modeling missingness for time-to-event data: a case study in osteoporosis. Neuenschwander B; Branson M J Biopharm Stat; 2004 Nov; 14(4):1005-19. PubMed ID: 15587977 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]