BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22101261)

  • 1. Micro- and nanotechnology in cardiovascular tissue engineering.
    Zhang B; Xiao Y; Hsieh A; Thavandiran N; Radisic M
    Nanotechnology; 2011 Dec; 22(49):494003. PubMed ID: 22101261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration.
    Zhu W; O'Brien C; O'Brien JR; Zhang LG
    Nanomedicine (Lond); 2014 May; 9(6):859-75. PubMed ID: 24981651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of nanotechnology in 3D printed tissue engineering scaffolds.
    Laird NZ; Acri TM; Chakka JL; Quarterman JC; Malkawi WI; Elangovan S; Salem AK
    Eur J Pharm Biopharm; 2021 Apr; 161():15-28. PubMed ID: 33549706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bottom-Up Engineering of Well-Defined 3D Microtissues Using Microplatforms and Biomedical Applications.
    Lee GH; Lee JS; Wang X; Lee SH
    Adv Healthc Mater; 2016 Jan; 5(1):56-74. PubMed ID: 25880830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabrication of channel arrays promotes vessel-like network formation in cardiac cell construct and vascularization in vivo.
    Zieber L; Or S; Ruvinov E; Cohen S
    Biofabrication; 2014 Jun; 6(2):024102. PubMed ID: 24464741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro/nano-fabrication technologies for cell biology.
    Qian T; Wang Y
    Med Biol Eng Comput; 2010 Oct; 48(10):1023-32. PubMed ID: 20490938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary force lithography for cardiac tissue engineering.
    Macadangdang J; Lee HJ; Carson D; Jiao A; Fugate J; Pabon L; Regnier M; Murry C; Kim DH
    J Vis Exp; 2014 Jun; (88):. PubMed ID: 24962161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtechnology and nanotechnology in nerve repair.
    Chang WC; Kliot M; Sretavan DW
    Neurol Res; 2008 Dec; 30(10):1053-62. PubMed ID: 19079980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of arbitrary 3D components in cardiac surgery: from macro-, micro- to nanoscale.
    Kankala RK; Zhu K; Li J; Wang CS; Wang SB; Chen AZ
    Biofabrication; 2017 Aug; 9(3):032002. PubMed ID: 28770811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing Hierarchical Nano- and Micro-Fabrication Technologies for Musculoskeletal Tissue Engineering.
    Abbah SA; Delgado LM; Azeem A; Fuller K; Shologu N; Keeney M; Biggs MJ; Pandit A; Zeugolis DI
    Adv Healthc Mater; 2015 Nov; 4(16):2488-99. PubMed ID: 26667589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of core-shell spheroids as building blocks for engineering 3D complex vascularized tissue.
    Kim EM; Lee YB; Kim SJ; Park J; Lee J; Kim SW; Park H; Shin H
    Acta Biomater; 2019 Dec; 100():158-172. PubMed ID: 31542503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional microfabrication by two-photon polymerization technique.
    Ovsianikov A; Chichkov BN
    Methods Mol Biol; 2012; 868():311-25. PubMed ID: 22692619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic design and fabrication of scaffolds integrating oriented micro-pores with branched channel networks for myocardial tissue engineering.
    Fang Y; Zhang T; Zhang L; Gong W; Sun W
    Biofabrication; 2019 Apr; 11(3):035004. PubMed ID: 30870827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication.
    Murtuza B; Nichol JW; Khademhosseini A
    Tissue Eng Part B Rev; 2009 Dec; 15(4):443-54. PubMed ID: 19552604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro- and nanofabrication of chitosan structures for regenerative engineering.
    Jiang T; Deng M; James R; Nair LS; Laurencin CT
    Acta Biomater; 2014 Apr; 10(4):1632-45. PubMed ID: 23851172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured materials for cardiovascular tissue engineering.
    Ahmed M; Yildirimer L; Khademhosseini A; Seifalian AM
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4775-85. PubMed ID: 22905530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropatterning electrospun scaffolds to create intrinsic vascular networks.
    Jeffries EM; Nakamura S; Lee KW; Clampffer J; Ijima H; Wang Y
    Macromol Biosci; 2014 Nov; 14(11):1514-20. PubMed ID: 25142314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined technologies for microfabricating elastomeric cardiac tissue engineering scaffolds.
    Guillemette MD; Park H; Hsiao JC; Jain SR; Larson BL; Langer R; Freed LE
    Macromol Biosci; 2010 Nov; 10(11):1330-7. PubMed ID: 20718054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered micro-objects as scaffolding elements in cellular building blocks for bottom-up tissue engineering approaches.
    Leferink A; Schipper D; Arts E; Vrij E; Rivron N; Karperien M; Mittmann K; van Blitterswijk C; Moroni L; Truckenmüller R
    Adv Mater; 2014 Apr; 26(16):2592-9. PubMed ID: 24395427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upgrading prevascularization in tissue engineering: A review of strategies for promoting highly organized microvascular network formation.
    Sharma D; Ross D; Wang G; Jia W; Kirkpatrick SJ; Zhao F
    Acta Biomater; 2019 Sep; 95():112-130. PubMed ID: 30878450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.