These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22101439)

  • 41. Insight into biofilm-associated microbial life.
    Bhinu VS
    J Mol Microbiol Biotechnol; 2005; 10(1):15-21. PubMed ID: 16491022
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pseudomonas aeruginosa attachment on QCM-D sensors: the role of cell and surface hydrophobicities.
    Marcus IM; Herzberg M; Walker SL; Freger V
    Langmuir; 2012 Apr; 28(15):6396-402. PubMed ID: 22439703
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An in vitro model of Pseudomonas aeruginosa biofilms on viable airway epithelial cell monolayers.
    Woodworth BA; Tamashiro E; Bhargave G; Cohen NA; Palmer JN
    Am J Rhinol; 2008; 22(3):235-8. PubMed ID: 18588754
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gene expression in Pseudomonas aeruginosa biofilms.
    Whiteley M; Bangera MG; Bumgarner RE; Parsek MR; Teitzel GM; Lory S; Greenberg EP
    Nature; 2001 Oct; 413(6858):860-4. PubMed ID: 11677611
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biofilm formation and interactions of bacterial strains found in wastewater treatment systems.
    Andersson S; Kuttuva Rajarao G; Land CJ; Dalhammar G
    FEMS Microbiol Lett; 2008 Jun; 283(1):83-90. PubMed ID: 18422628
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Silver against Pseudomonas aeruginosa biofilms.
    Bjarnsholt T; Kirketerp-Møller K; Kristiansen S; Phipps R; Nielsen AK; Jensen PØ; Høiby N; Givskov M
    APMIS; 2007 Aug; 115(8):921-8. PubMed ID: 17696948
    [TBL] [Abstract][Full Text] [Related]  

  • 47. S. epidermidis biofilm formation: effects of biomaterial surface chemistry and serum proteins.
    Patel JD; Ebert M; Ward R; Anderson JM
    J Biomed Mater Res A; 2007 Mar; 80(3):742-51. PubMed ID: 17177270
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Controlled Attachment of Pseudomonas aeruginosa with Binary Colloidal Crystal-Based Topographies.
    Pingle H; Wang PY; Thissen H; Kingshott P
    Small; 2018 Apr; 14(14):e1703574. PubMed ID: 29484803
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The design of superhydrophobic stainless steel surfaces by controlling nanostructures: A key parameter to reduce the implantation of pathogenic bacteria.
    Bruzaud J; Tarrade J; Celia E; Darmanin T; Taffin de Givenchy E; Guittard F; Herry JM; Guilbaud M; Bellon-Fontaine MN
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():40-47. PubMed ID: 28183625
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Porous surface structure fabricated by breath figures that suppresses Pseudomonas aeruginosa biofilm formation.
    Manabe K; Nishizawa S; Shiratori S
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11900-5. PubMed ID: 24171453
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy.
    Lau PC; Dutcher JR; Beveridge TJ; Lam JS
    Biophys J; 2009 Apr; 96(7):2935-48. PubMed ID: 19348775
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dependence of the initial adhesion of biofilm forming Pseudomonas putida mt2 on physico-chemical material properties.
    Montag D; Frant M; Horn H; Liefeith K
    Biofouling; 2012; 28(3):315-27. PubMed ID: 22452391
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel microfluidic device for the in situ optical and mechanical analysis of bacterial biofilms.
    Mosier AP; Kaloyeros AE; Cady NC
    J Microbiol Methods; 2012 Oct; 91(1):198-204. PubMed ID: 22796059
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interaction of bacterial cells with cluster-assembled nanostructured titania surfaces: an atomic force microscopy study.
    Singh AV; Galluzzi M; Borghi F; Indrieri M; Vyas V; Podestà A; Gade WN
    J Nanosci Nanotechnol; 2013 Jan; 13(1):77-85. PubMed ID: 23646700
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pseudomonas aeruginosa Initiates a Rapid and Specific Transcriptional Response during Surface Attachment.
    Jones CJ; Grotewold N; Wozniak DJ; Gloag ES
    J Bacteriol; 2022 May; 204(5):e0008622. PubMed ID: 35467391
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of a platform to isolate the influences of surface nanotopography from chemistry on bacterial attachment and growth.
    Pegalajar-Jurado A; Easton CD; Crawford RJ; McArthur SL
    Biointerphases; 2015 Mar; 10(1):011002. PubMed ID: 25720764
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Study of Biofilm Growth on Slippery Liquid-Infused Porous Surfaces Made from Fluoropor.
    Keller N; Bruchmann J; Sollich T; Richter C; Thelen R; Kotz F; Schwartz T; Helmer D; Rapp BE
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4480-4487. PubMed ID: 30645094
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Minimal attachment of
    Pingle H; Wang PY; Cavaliere R; Whitchurch CB; Thissen H; Kingshott P
    Biointerphases; 2018 Oct; 13(6):06E405. PubMed ID: 30326702
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Patterned SLIPS for the Formation of Arrays of Biofilm Microclusters with Defined Geometries.
    Bruchmann J; Pini I; Gill TS; Schwartz T; Levkin PA
    Adv Healthc Mater; 2017 Jan; 6(1):. PubMed ID: 27879061
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 'Should I stay or should I go?' Bacterial attachment vs biofilm formation on surface-modified membranes.
    Bernstein R; Freger V; Lee JH; Kim YG; Lee J; Herzberg M
    Biofouling; 2014; 30(3):367-76. PubMed ID: 24579672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.