These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function. Hirai DM; Copp SW; Holdsworth CT; Ferguson SK; McCullough DJ; Behnke BJ; Musch TI; Poole DC Am J Physiol Heart Circ Physiol; 2014 Mar; 306(5):H690-8. PubMed ID: 24414070 [TBL] [Abstract][Full Text] [Related]
4. Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization. Hirai DM; Musch TI; Poole DC Am J Physiol Heart Circ Physiol; 2015 Nov; 309(9):H1419-39. PubMed ID: 26320036 [TBL] [Abstract][Full Text] [Related]
5. Limited maximal exercise capacity in patients with chronic heart failure: partitioning the contributors. Esposito F; Mathieu-Costello O; Shabetai R; Wagner PD; Richardson RS J Am Coll Cardiol; 2010 May; 55(18):1945-54. PubMed ID: 20430267 [TBL] [Abstract][Full Text] [Related]
6. Aging potentiates the effect of congestive heart failure on muscle microvascular oxygenation. Behnke BJ; Delp MD; Poole DC; Musch TI J Appl Physiol (1985); 2007 Nov; 103(5):1757-63. PubMed ID: 17761789 [TBL] [Abstract][Full Text] [Related]
7. Isolated quadriceps training increases maximal exercise capacity in chronic heart failure: the role of skeletal muscle convective and diffusive oxygen transport. Esposito F; Reese V; Shabetai R; Wagner PD; Richardson RS J Am Coll Cardiol; 2011 Sep; 58(13):1353-62. PubMed ID: 21920265 [TBL] [Abstract][Full Text] [Related]
8. Skeletal muscle microcirculatory abnormalities are associated with exercise intolerance, ventilatory inefficiency, and impaired autonomic control in heart failure. Manetos C; Dimopoulos S; Tzanis G; Vakrou S; Tasoulis A; Kapelios C; Agapitou V; Ntalianis A; Terrovitis J; Nanas S J Heart Lung Transplant; 2011 Dec; 30(12):1403-8. PubMed ID: 21982360 [TBL] [Abstract][Full Text] [Related]
9. Skeletal muscle metabolic recovery following submaximal exercise in chronic heart failure is limited more by O(2) delivery than O(2) utilization. Kemps HM; Prompers JJ; Wessels B; De Vries WR; Zonderland ML; Thijssen EJ; Nicolay K; Schep G; Doevendans PA Clin Sci (Lond); 2009 Oct; 118(3):203-10. PubMed ID: 20310084 [TBL] [Abstract][Full Text] [Related]
10. The relation between cardiac output kinetics and skeletal muscle oxygenation during moderate exercise in moderately impaired patients with chronic heart failure. Spee RF; Niemeijer VM; Schoots T; Wijn PF; Doevendans PA; Kemps HM J Appl Physiol (1985); 2016 Jul; 121(1):198-204. PubMed ID: 27283909 [TBL] [Abstract][Full Text] [Related]
11. Progressive chronic heart failure slows the recovery of microvascular O2 pressures after contractions in the rat spinotrapezius muscle. Copp SW; Hirai DM; Ferreira LF; Poole DC; Musch TI Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1755-61. PubMed ID: 20817826 [TBL] [Abstract][Full Text] [Related]
12. Effects of high-intensity interval training on central haemodynamics and skeletal muscle oxygenation during exercise in patients with chronic heart failure. Spee RF; Niemeijer VM; Wijn PF; Doevendans PA; Kemps HM Eur J Prev Cardiol; 2016 Dec; 23(18):1943-1952. PubMed ID: 27440661 [TBL] [Abstract][Full Text] [Related]
13. Oxygen exchange in muscle of young and old rats: muscle-vascular-pulmonary coupling. Poole DC; Ferreira LF Exp Physiol; 2007 Mar; 92(2):341-6. PubMed ID: 17185349 [TBL] [Abstract][Full Text] [Related]
14. Effects of nitrite infusion on skeletal muscle vascular control during exercise in rats with chronic heart failure. Glean AA; Ferguson SK; Holdsworth CT; Colburn TD; Wright JL; Fees AJ; Hageman KS; Poole DC; Musch TI Am J Physiol Heart Circ Physiol; 2015 Oct; 309(8):H1354-60. PubMed ID: 26371165 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of microvascular oxygen partial pressure in contracting skeletal muscle of rats with chronic heart failure. Diederich ER; Behnke BJ; McDonough P; Kindig CA; Barstow TJ; Poole DC; Musch TI Cardiovasc Res; 2002 Dec; 56(3):479-86. PubMed ID: 12445889 [TBL] [Abstract][Full Text] [Related]
16. Impaired oxygen uptake kinetics in heart failure with preserved ejection fraction. Hearon CM; Sarma S; Dias KA; Hieda M; Levine BD Heart; 2019 Oct; 105(20):1552-1558. PubMed ID: 31208971 [TBL] [Abstract][Full Text] [Related]
17. Capillary density of skeletal muscle: a contributing mechanism for exercise intolerance in class II-III chronic heart failure independent of other peripheral alterations. Duscha BD; Kraus WE; Keteyian SJ; Sullivan MJ; Green HJ; Schachat FH; Pippen AM; Brawner CA; Blank JM; Annex BH J Am Coll Cardiol; 1999 Jun; 33(7):1956-63. PubMed ID: 10362199 [TBL] [Abstract][Full Text] [Related]
18. Effects of chronic heart failure in rats on the recovery of microvascular PO2 after contractions in muscles of opposing fibre type. McDonough P; Behnke BJ; Musch TI; Poole DC Exp Physiol; 2004 Jul; 89(4):473-85. PubMed ID: 15131070 [TBL] [Abstract][Full Text] [Related]
19. [Stress and stress tolerance in chronic heart failure]. Hambrecht R Herz; 2002 Mar; 27(2):179-86. PubMed ID: 12025463 [TBL] [Abstract][Full Text] [Related]
20. Reduced exercise tolerance in CHF may be related to factors other than impaired skeletal muscle oxidative capacity. Williams AD; Selig S; Hare DL; Hayes A; Krum H; Patterson J; Geerling RH; Toia D; Carey MF J Card Fail; 2004 Apr; 10(2):141-8. PubMed ID: 15101026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]