BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22101824)

  • 1. A suite of Switch I and Switch II mutant structures from the G-protein domain of FeoB.
    Ash MR; Maher MJ; Guss JM; Jormakka M
    Acta Crystallogr D Biol Crystallogr; 2011 Nov; 67(Pt 11):973-80. PubMed ID: 22101824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The initiation of GTP hydrolysis by the G-domain of FeoB: insights from a transition-state complex structure.
    Ash MR; Maher MJ; Guss JM; Jormakka M
    PLoS One; 2011; 6(8):e23355. PubMed ID: 21858085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of an N11A mutant of the G-protein domain of FeoB.
    Ash MR; Maher MJ; Guss JM; Jormakka M
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Dec; 67(Pt 12):1511-5. PubMed ID: 22139154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium-activated GTPase reaction in the G Protein-coupled ferrous iron transporter B.
    Ash MR; Guilfoyle A; Clarke RJ; Guss JM; Maher MJ; Jormakka M
    J Biol Chem; 2010 May; 285(19):14594-602. PubMed ID: 20220129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional analysis of a FeoB A143S G5 loop mutant explains the accelerated GDP release rate.
    Guilfoyle AP; Deshpande CN; Vincent K; Pedroso MM; Schenk G; Maher MJ; Jormakka M
    FEBS J; 2014 May; 281(9):2254-65. PubMed ID: 24649829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the GTPase and GDI domains of FeoB, the ferrous iron transporter of Legionella pneumophila.
    Petermann N; Hansen G; Schmidt CL; Hilgenfeld R
    FEBS Lett; 2010 Feb; 584(4):733-8. PubMed ID: 20036663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenesis in the switch IV of the helical domain of the human Gsalpha reduces its GDP/GTP exchange rate.
    Echeverría V; Hinrichs MV; Torrejón M; Ropero S; Martinez J; Toro MJ; Olate J
    J Cell Biochem; 2000 Jan; 76(3):368-75. PubMed ID: 10649434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of the FeoB G-domain from Methanococcus jannaschii.
    Köster S; Wehner M; Herrmann C; Kühlbrandt W; Yildiz O
    J Mol Biol; 2009 Sep; 392(2):405-19. PubMed ID: 19615379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S111N mutation in the helical domain of human Gs(alpha) reduces its GDP/GTP exchange rate.
    Brito M; Guzmán L; Romo X; Soto X; Hinrichs MV; Olate J
    J Cell Biochem; 2002; 85(3):615-20. PubMed ID: 11968001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis.
    Praefcke GJ; Kloep S; Benscheid U; Lilie H; Prakash B; Herrmann C
    J Mol Biol; 2004 Nov; 344(1):257-69. PubMed ID: 15504415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fusion of the Bacteroides fragilis ferrous iron import proteins reveals a role for FeoA in stabilizing GTP-bound FeoB.
    Sestok AE; Brown JB; Obi JO; O'Sullivan SM; Garcin ED; Deredge DJ; Smith AT
    J Biol Chem; 2022 Apr; 298(4):101808. PubMed ID: 35271852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria.
    Marlovits TC; Haase W; Herrmann C; Aller SG; Unger VM
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16243-8. PubMed ID: 12446835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for G protein control of the prokaryotic ATP sulfurylase.
    Mougous JD; Lee DH; Hubbard SC; Schelle MW; Vocadlo DJ; Berger JM; Bertozzi CR
    Mol Cell; 2006 Jan; 21(1):109-22. PubMed ID: 16387658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of the small G protein Rap2A in complex with its substrate GTP, with GDP and with GTPgammaS.
    Cherfils J; Ménétrey J; Le Bras G; Janoueix-Lerosey I; de Gunzburg J; Garel JR; Auzat I
    EMBO J; 1997 Sep; 16(18):5582-91. PubMed ID: 9312017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the ribosome associating GTPase HflX.
    Wu H; Sun L; Blombach F; Brouns SJ; Snijders AP; Lorenzen K; van den Heuvel RH; Heck AJ; Fu S; Li X; Zhang XC; Rao Z; van der Oost J
    Proteins; 2010 Feb; 78(3):705-13. PubMed ID: 19787775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of individual domains and identification of internal gap in human guanylate binding protein-1.
    Abdullah N; Srinivasan B; Modiano N; Cresswell P; Sau AK
    J Mol Biol; 2009 Feb; 386(3):690-703. PubMed ID: 19150356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural fold, conservation and Fe(II) binding of the intracellular domain of prokaryote FeoB.
    Hung KW; Chang YW; Eng ET; Chen JH; Chen YC; Sun YJ; Hsiao CD; Dong G; Spasov KA; Unger VM; Huang TH
    J Struct Biol; 2010 Jun; 170(3):501-12. PubMed ID: 20123128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation of the highly conserved Arg165 and Glu168 residues of human Gsalpha disrupts the alphaD-alphaE loop and enhances basal GDP/GTP exchange rate.
    Hinrichs MV; Montecino M; Bunster M; Olate J
    J Cell Biochem; 2004 Oct; 93(2):409-17. PubMed ID: 15368366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
    Ghosh A; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C
    Nature; 2006 Mar; 440(7080):101-4. PubMed ID: 16511497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the GTP-binding protein Obg from Thermus thermophilus HB8.
    Kukimoto-Niino M; Murayama K; Inoue M; Terada T; Tame JR; Kuramitsu S; Shirouzu M; Yokoyama S
    J Mol Biol; 2004 Mar; 337(3):761-70. PubMed ID: 15019792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.