BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22102020)

  • 1. ADP-Mg2+ bound to the ATP-grasp domain of ATP-citrate lyase.
    Sun T; Hayakawa K; Fraser ME
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Oct; 67(Pt 10):1168-72. PubMed ID: 22102020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of hydroxycitrate to human ATP-citrate lyase.
    Hu J; Komakula A; Fraser ME
    Acta Crystallogr D Struct Biol; 2017 Aug; 73(Pt 8):660-671. PubMed ID: 28777081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of succinyl-CoA synthetase bound to the succinyl-phosphate intermediate clarifies the catalytic mechanism of ATP-citrate lyase.
    Huang J; Fraser ME
    Acta Crystallogr F Struct Biol Commun; 2022 Oct; 78(Pt 10):363-370. PubMed ID: 36189720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the citrate-binding site of human ATP-citrate lyase using X-ray crystallography.
    Sun T; Hayakawa K; Bateman KS; Fraser ME
    J Biol Chem; 2010 Aug; 285(35):27418-27428. PubMed ID: 20558738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the active site residues in ATP-citrate lyase's carboxy-terminal portion.
    Nguyen VH; Singh N; Medina A; Usón I; Fraser ME
    Protein Sci; 2019 Oct; 28(10):1840-1849. PubMed ID: 31411782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADP-binding site of Escherichia coli succinyl-CoA synthetase revealed by x-ray crystallography.
    Joyce MA; Fraser ME; James MN; Bridger WA; Wolodko WT
    Biochemistry; 2000 Jan; 39(1):17-25. PubMed ID: 10625475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) and the inhibitory influence of citrate on substrate binding.
    Crochet RB; Kim JD; Lee H; Yim YS; Kim SG; Neau D; Lee YH
    Proteins; 2017 Jan; 85(1):117-124. PubMed ID: 27802586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and biochemical analyses on the reaction mechanism of a bacterial ATP-citrate lyase.
    Kanao T; Fukui T; Atomi H; Imanaka T
    Eur J Biochem; 2002 Jul; 269(14):3409-16. PubMed ID: 12135479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a high-throughput crystal structure-determination platform for JAK1 using a novel metal-chelator soaking system.
    Caspers NL; Han S; Rajamohan F; Hoth LR; Geoghegan KF; Subashi TA; Vazquez ML; Kaila N; Cronin CN; Johnson E; Kurumbail RG
    Acta Crystallogr F Struct Biol Commun; 2016 Nov; 72(Pt 11):840-845. PubMed ID: 27827355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis for acetyl-CoA production by ATP-citrate lyase.
    Wei X; Schultz K; Bazilevsky GA; Vogt A; Marmorstein R
    Nat Struct Mol Biol; 2020 Jan; 27(1):33-41. PubMed ID: 31873304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of Escherichia coli RimK, an ATP-grasp fold, L-glutamyl ligase enzyme.
    Zhao G; Jin Z; Wang Y; Allewell NM; Tuchman M; Shi D
    Proteins; 2013 Oct; 81(10):1847-54. PubMed ID: 23609986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on a rat-liver cell-sap protein yielding 3-[32P]-phosphohistidine after incubation with [32P]ATP and alkaline hydrolysis. Identification of the protein as ATP citrate lyase.
    Mårdh S; Ljungström O; Högstedt S; Zetterqvist O
    Biochim Biophys Acta; 1971 Dec; 251(3):419-26. PubMed ID: 11452885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of triphosphoribosyl-dephospho-CoA as precursor of the citrate lyase prosthetic group.
    Schneider K; Dimroth P; Bott M
    FEBS Lett; 2000 Oct; 483(2-3):165-8. PubMed ID: 11042274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide Binding, Evolutionary Insights, and Interaction Partners of the Pseudokinase Unc-51-like Kinase 4.
    Preuss F; Chatterjee D; Mathea S; Shrestha S; St-Germain J; Saha M; Kannan N; Raught B; Rottapel R; Knapp S
    Structure; 2020 Nov; 28(11):1184-1196.e6. PubMed ID: 32814032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An allosteric mechanism for potent inhibition of human ATP-citrate lyase.
    Wei J; Leit S; Kuai J; Therrien E; Rafi S; Harwood HJ; DeLaBarre B; Tong L
    Nature; 2019 Apr; 568(7753):566-570. PubMed ID: 30944472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the hydrolysis of ATP by a nucleotide binding subunit of an amino acid ABC transporter from Thermus thermophilus.
    Devi SK; Chichili VP; Jeyakanthan J; Velmurugan D; Sivaraman J
    J Struct Biol; 2015 Jun; 190(3):367-72. PubMed ID: 25916755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of biotin carboxylase.
    Nilsson Lill SO; Gao J; Waldrop GL
    J Phys Chem B; 2008 Mar; 112(10):3149-56. PubMed ID: 18271571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor.
    Zeymer C; Barends TR; Werbeck ND; Schlichting I; Reinstein J
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):582-95. PubMed ID: 24531492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the molecular properties of KtrC, a second RCK domain that regulates a Ktr channel in Bacillus subtilis.
    Rocha R; Teixeira-Duarte CM; Jorge JMP; Morais-Cabral JH
    J Struct Biol; 2019 Mar; 205(3):34-43. PubMed ID: 30753894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase.
    Willemoës M; Hove-Jensen B
    Biochemistry; 1997 Apr; 36(16):5078-83. PubMed ID: 9125530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.