BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22102164)

  • 1. Variable open-end wave reflection in the pulmonary arteries of anesthetized sheep.
    Dwyer N; Yong AC; Kilpatrick D
    J Physiol Sci; 2012 Jan; 62(1):21-8. PubMed ID: 22102164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative wave reflections in pulmonary arteries.
    Hollander EH; Wang JJ; Dobson GM; Parker KH; Tyberg JV
    Am J Physiol Heart Circ Physiol; 2001 Aug; 281(2):H895-902. PubMed ID: 11454596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chronically elevated pulmonary arterial pressure and flow on right ventricular afterload.
    Ha B; Lucas CL; Henry GW; Frantz EG; Ferreiro JI; Wilcox BR
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H155-65. PubMed ID: 8048580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational study of pressure wave reflections in the pulmonary arteries.
    Qureshi MU; Hill NA
    J Math Biol; 2015 Dec; 71(6-7):1525-49. PubMed ID: 25754476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous pulmonary trunk and pulmonary arterial wave intensity analysis in fetal lambs: evidence for cyclical, midsystolic pulmonary vasoconstriction.
    Smolich JJ; Mynard JP; Penny DJ
    Am J Physiol Regul Integr Comp Physiol; 2008 May; 294(5):R1554-62. PubMed ID: 18287223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wave intensity analysis of right ventricular and pulmonary vascular contributions to higher pulmonary than aortic blood pressure in fetal lambs.
    Smolich JJ; Mynard JP; Penny DJ
    Am J Physiol Heart Circ Physiol; 2010 Sep; 299(3):H890-7. PubMed ID: 20562335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Major influence of a 'smoke and mirrors' effect caused by wave reflection on early diastolic coronary arterial wave intensity.
    Mynard JP; Penny DJ; Smolich JJ
    J Physiol; 2018 Mar; 596(6):993-1017. PubMed ID: 29318640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulmonary artery hemodynamics in primary pulmonary hypertension.
    Laskey WK; Ferrari VA; Palevsky HI; Kussmaul WG
    J Am Coll Cardiol; 1993 Feb; 21(2):406-12. PubMed ID: 8426005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic characterization and hemodynamic effects of pulmonary waves in fetal lambs using cardiac extrasystoles and beat-by-beat wave intensity analysis.
    Smolich JJ; Mynard JP; Penny DJ
    Am J Physiol Regul Integr Comp Physiol; 2009 Aug; 297(2):R428-36. PubMed ID: 19494171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave reflections in the pulmonary arteries analysed with the reservoir-wave model.
    Bouwmeester JC; Belenkie I; Shrive NG; Tyberg JV
    J Physiol; 2014 Jul; 592(14):3053-62. PubMed ID: 24756638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced ventricular pump function and decreased reservoir backflow sustain rise in pulmonary blood flow after reduction of lung liquid volume in fetal lambs.
    Smolich JJ
    Am J Physiol Regul Integr Comp Physiol; 2014 Feb; 306(4):R273-80. PubMed ID: 24401987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.
    Feng J; Khir AW
    Proc Inst Mech Eng H; 2008 May; 222(4):531-42. PubMed ID: 18595362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulmonary trunk, ductus arteriosus, and pulmonary arterial phasic blood flow interactions during systole and diastole in the fetus.
    Smolich JJ; Mynard JP; Penny DJ
    J Appl Physiol (1985); 2011 May; 110(5):1362-73. PubMed ID: 21393465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reservoir-wave approach to characterize pulmonary vascular-right ventricular interactions in humans.
    Ghimire A; Andersen MJ; Burrowes LM; Bouwmeester JC; Grant AD; Belenkie I; Fine NM; Borlaug BA; Tyberg JV
    J Appl Physiol (1985); 2016 Dec; 121(6):1348-1353. PubMed ID: 27765845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proximal pressure reducing effect of wave reflection in the pulmonary circulation disappear in obstructive disease: insight from a rabbit model.
    Vanden Eynden F; El-Oumeiri B; Bové T; Van Nooten G; Segers P
    Am J Physiol Heart Circ Physiol; 2019 May; 316(5):H992-H1004. PubMed ID: 30767664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary artery wave reflection and right ventricular function after lung resection.
    Glass A; McCall P; Arthur A; Mangion K; Shelley B
    Br J Anaesth; 2023 Jan; 130(1):e128-e136. PubMed ID: 36115714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reservoir-wave paradigm introduces error into arterial wave analysis: a computer modelling and in-vivo study.
    Mynard JP; Penny DJ; Davidson MR; Smolich JJ
    J Hypertens; 2012 Apr; 30(4):734-43. PubMed ID: 22278142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulmonary vascular impedance and wave reflections in the hypoxic calf.
    Zuckerman BD; Orton EC; Latham LP; Barbiere CC; Stenmark KR; Reeves JT
    J Appl Physiol (1985); 1992 Jun; 72(6):2118-27. PubMed ID: 1629064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of pulmonary endarterectomy on pulmonary arterial wave propagation and reservoir function.
    Su J; Hughes AD; Simonsen U; Nielsen-Kudsk JE; Parker KH; Howard LS; Mellemkjaer S
    Am J Physiol Heart Circ Physiol; 2019 Sep; 317(3):H505-H516. PubMed ID: 31225986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genesis of the characteristic pulmonary venous pressure waveform as described by the reservoir-wave model.
    Bouwmeester JC; Belenkie I; Shrive NG; Tyberg JV
    J Physiol; 2014 Sep; 592(17):3801-12. PubMed ID: 25015922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.