These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22102327)

  • 1. The I domain of the AAA+ HslUV protease coordinates substrate binding, ATP hydrolysis, and protein degradation.
    Sundar S; Baker TA; Sauer RT
    Protein Sci; 2012 Feb; 21(2):188-98. PubMed ID: 22102327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric nucleotide transactions of the HslUV protease.
    Yakamavich JA; Baker TA; Sauer RT
    J Mol Biol; 2008 Jul; 380(5):946-57. PubMed ID: 18582897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Structurally Dynamic Region of the HslU Intermediate Domain Controls Protein Degradation and ATP Hydrolysis.
    Baytshtok V; Fei X; Grant RA; Baker TA; Sauer RT
    Structure; 2016 Oct; 24(10):1766-1777. PubMed ID: 27667691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural alteration in the pore motif of the bacterial 20S proteasome homolog HslV leads to uncontrolled protein degradation.
    Park E; Lee JW; Yoo HM; Ha BH; An JY; Jeon YJ; Seol JH; Eom SH; Chung CH
    J Mol Biol; 2013 Aug; 425(16):2940-54. PubMed ID: 23707406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise activity of ClpY (HslU) mutants in the processive degradation of Escherichia coli ClpYQ (HslUV) protease substrates.
    Hsieh FC; Chen CT; Weng YT; Peng SS; Chen YC; Huang LY; Hu HT; Wu YL; Lin NC; Wu WF
    J Bacteriol; 2011 Oct; 193(19):5465-76. PubMed ID: 21803990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase.
    Park E; Rho YM; Koh OJ; Ahn SW; Seong IS; Song JJ; Bang O; Seol JH; Wang J; Eom SH; Chung CH
    J Biol Chem; 2005 Jun; 280(24):22892-8. PubMed ID: 15849200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation.
    Baytshtok V; Chen J; Glynn SE; Nager AR; Grant RA; Baker TA; Sauer RT
    J Biol Chem; 2017 Apr; 292(14):5695-5704. PubMed ID: 28223361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple sequence signals direct recognition and degradation of protein substrates by the AAA+ protease HslUV.
    Sundar S; McGinness KE; Baker TA; Sauer RT
    J Mol Biol; 2010 Oct; 403(3):420-9. PubMed ID: 20837023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HslVU ATP-dependent protease utilizes maximally six among twelve threonine active sites during proteolysis.
    Lee JW; Park E; Jeong MS; Jeon YJ; Eom SH; Seol JH; Chung CH
    J Biol Chem; 2009 Nov; 284(48):33475-84. PubMed ID: 19801685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of double-loop (130~159 aa and 175~209 aa) in ClpY(HslU)-I domain for SulA substrate degradation by ClpYQ(HslUV) protease in Escherichia coli.
    Hsieh FC; Chang LK; Tsai CH; Kuan JE; Wu KF; Wu C; Wu WF
    J Gen Appl Microbiol; 2021 Feb; 66(6):297-306. PubMed ID: 32435002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of MG132 or deletion of the Thr active sites in HslV subunits increases the affinity of HslV protease for HslU ATPase and makes this interaction nucleotide-independent.
    Park E; Lee JW; Eom SH; Seol JH; Chung CH
    J Biol Chem; 2008 Nov; 283(48):33258-66. PubMed ID: 18838376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide-dependent substrate recognition by the AAA+ HslUV protease.
    Burton RE; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2005 Mar; 12(3):245-51. PubMed ID: 15696175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Nov; 15(11):1147-51. PubMed ID: 18931677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate.
    Fei X; Bell TA; Jenni S; Stinson BM; Baker TA; Harrison SC; Sauer RT
    Elife; 2020 Feb; 9():. PubMed ID: 32108573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational plasticity of the ClpAP AAA+ protease couples protein unfolding and proteolysis.
    Lopez KE; Rizo AN; Tse E; Lin J; Scull NW; Thwin AC; Lucius AL; Shorter J; Southworth DR
    Nat Struct Mol Biol; 2020 May; 27(5):406-416. PubMed ID: 32313240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hinge-Linker Elements in the AAA+ Protein Unfoldase ClpX Mediate Intersubunit Communication, Assembly, and Mechanical Activity.
    Bell TA; Baker TA; Sauer RT
    Biochemistry; 2018 Dec; 57(49):6787-6796. PubMed ID: 30418765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClpXP, an ATP-powered unfolding and protein-degradation machine.
    Baker TA; Sauer RT
    Biochim Biophys Acta; 2012 Jan; 1823(1):15-28. PubMed ID: 21736903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. E. coli ClpA catalyzed polypeptide translocation is allosterically controlled by the protease ClpP.
    Miller JM; Lin J; Li T; Lucius AL
    J Mol Biol; 2013 Aug; 425(15):2795-812. PubMed ID: 23639359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Feb; 15(2):139-45. PubMed ID: 18223658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.