These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22102327)

  • 21. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine.
    Glynn SE; Nager AR; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2012 May; 19(6):616-22. PubMed ID: 22562135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Non-dominant AAA+ Ring in the ClpAP Protease Functions as an Anti-stalling Motor to Accelerate Protein Unfolding and Translocation.
    Kotamarthi HC; Sauer RT; Baker TA
    Cell Rep; 2020 Feb; 30(8):2644-2654.e3. PubMed ID: 32101742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the Escherichia coli ClpY (HslU) substrate recognition site in the ClpYQ (HslUV) protease using the yeast two-hybrid system.
    Lien HY; Shy RS; Peng SS; Wu YL; Weng YT; Chen HH; Su PC; Ng WF; Chen YC; Chang PY; Wu WF
    J Bacteriol; 2009 Jul; 191(13):4218-31. PubMed ID: 19395483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP.
    Rodriguez-Aliaga P; Ramirez L; Kim F; Bustamante C; Martin A
    Nat Struct Mol Biol; 2016 Nov; 23(11):974-981. PubMed ID: 27669037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2008 Feb; 29(4):441-50. PubMed ID: 18313382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of protein substrate degradation by HslUV.
    Kwon AR; Trame CB; McKay DB
    J Struct Biol; 2004; 146(1-2):141-7. PubMed ID: 15037245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor.
    Deville C; Franke K; Mogk A; Bukau B; Saibil HR
    Cell Rep; 2019 Jun; 27(12):3433-3446.e4. PubMed ID: 31216466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Both ATPase domains of ClpA are critical for processing of stable protein structures.
    Kress W; Mutschler H; Weber-Ban E
    J Biol Chem; 2009 Nov; 284(45):31441-52. PubMed ID: 19726681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of MinD oscillator complexes by Escherichia coli ClpXP.
    LaBreck CJ; Trebino CE; Ferreira CN; Morrison JJ; DiBiasio EC; Conti J; Camberg JL
    J Biol Chem; 2021; 296():100162. PubMed ID: 33288679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conserved residues in the N-domain of the AAA+ chaperone ClpA regulate substrate recognition and unfolding.
    Erbse AH; Wagner JN; Truscott KN; Spall SK; Kirstein J; Zeth K; Turgay K; Mogk A; Bukau B; Dougan DA
    FEBS J; 2008 Apr; 275(7):1400-1410. PubMed ID: 18279386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity.
    Wohlever ML; Baker TA; Sauer RT
    Mol Microbiol; 2014 Jan; 91(1):66-78. PubMed ID: 24205897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Division of labor between the pore-1 loops of the D1 and D2 AAA+ rings coordinates substrate selectivity of the ClpAP protease.
    Zuromski KL; Kim S; Sauer RT; Baker TA
    J Biol Chem; 2021 Dec; 297(6):101407. PubMed ID: 34780718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and reactivity of an asymmetric complex between HslV and I-domain deleted HslU, a prokaryotic homolog of the eukaryotic proteasome.
    Kwon AR; Kessler BM; Overkleeft HS; McKay DB
    J Mol Biol; 2003 Jul; 330(2):185-95. PubMed ID: 12823960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of the cys mutations on structure and function of the ATP-dependent HslVU protease in Escherichia coli. The Cys287 to Val mutation in HslU uncouples the ATP-dependent proteolysis by HslvU from ATP hydrolysis.
    Yoo SJ; Kim HH; Shin DH; Lee CS; Seong IS; Seol JH; Shimbara N; Tanaka K; Chung CH
    J Biol Chem; 1998 Sep; 273(36):22929-35. PubMed ID: 9722513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Intrinsically Disordered N-terminal Extension of the ClpS Adaptor Reprograms Its Partner AAA+ ClpAP Protease.
    Torres-Delgado A; Kotamarthi HC; Sauer RT; Baker TA
    J Mol Biol; 2020 Aug; 432(17):4908-4921. PubMed ID: 32687854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery.
    Ripstein ZA; Vahidi S; Houry WA; Rubinstein JL; Kay LE
    Elife; 2020 Jan; 9():. PubMed ID: 31916936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation.
    Hinnerwisch J; Fenton WA; Furtak KJ; Farr GW; Horwich AL
    Cell; 2005 Jul; 121(7):1029-41. PubMed ID: 15989953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polypeptide translocation by the AAA+ ClpXP protease machine.
    Barkow SR; Levchenko I; Baker TA; Sauer RT
    Chem Biol; 2009 Jun; 16(6):605-12. PubMed ID: 19549599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: mechanistic studies of ATP-independent proteolysis.
    Jennings LD; Lun DS; Médard M; Licht S
    Biochemistry; 2008 Nov; 47(44):11536-46. PubMed ID: 18839965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine.
    Iosefson O; Nager AR; Baker TA; Sauer RT
    Nat Chem Biol; 2015 Mar; 11(3):201-6. PubMed ID: 25599533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.