These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 2210249)
1. Bile acid transport by basal membrane vesicles of human term placental trophoblast. Marin JJ; Serrano MA; el-Mir MY; Eleno N; Boyd CA Gastroenterology; 1990 Nov; 99(5):1431-8. PubMed ID: 2210249 [TBL] [Abstract][Full Text] [Related]
2. [A study on the mechanism of bile acid transport in the human placenta (the passive transport system of taurocholate across microvillous membrane)]. Iioka H; Moriyama I; Hino K; Ichijo M Nihon Sanka Fujinka Gakkai Zasshi; 1986 Jun; 38(6):837-44. PubMed ID: 3734517 [TBL] [Abstract][Full Text] [Related]
3. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system. Inoue M; Kinne R; Tran T; Arias IM J Clin Invest; 1984 Mar; 73(3):659-63. PubMed ID: 6707198 [TBL] [Abstract][Full Text] [Related]
4. An anion exchanger mediates bile acid transport across the placental microvillous membrane. Dumaswala R; Setchell KD; Moyer MS; Suchy FJ Am J Physiol; 1993 Jun; 264(6 Pt 1):G1016-23. PubMed ID: 8333527 [TBL] [Abstract][Full Text] [Related]
5. Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system. Weinberg SL; Burckhardt G; Wilson FA J Clin Invest; 1986 Jul; 78(1):44-50. PubMed ID: 3722383 [TBL] [Abstract][Full Text] [Related]
6. Sodium-coupled taurocholate transport in the proximal convolution of the rat kidney in vivo and in vitro. Wilson FA; Burckhardt G; Murer H; Rumrich G; Ullrich KJ J Clin Invest; 1981 Apr; 67(4):1141-50. PubMed ID: 7204571 [TBL] [Abstract][Full Text] [Related]
7. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles. Duffy MC; Blitzer BL; Boyer JL J Clin Invest; 1983 Oct; 72(4):1470-81. PubMed ID: 6630516 [TBL] [Abstract][Full Text] [Related]
8. Characterization of human placental activity for transport of taurocholate, using brush border (microvillous) membrane vesicles. Iioka H; Hisanaga H; Akada S; Shimamoto T; Yamada Y; Sakamoto Y; Moriyama IS; Ichijo M Placenta; 1993; 14(1):93-102. PubMed ID: 8456093 [TBL] [Abstract][Full Text] [Related]
10. ATP-dependent bile acid transport across microvillous membrane of human term trophoblast. Marin JJ; Bravo P; el-Mir MY; Serrano MA Am J Physiol; 1995 Apr; 268(4 Pt 1):G685-94. PubMed ID: 7733292 [TBL] [Abstract][Full Text] [Related]
11. Influence of hydroxylation and conjugation in cross-inhibition of bile acid transport across the human trophoblast basal membrane. Serrano MA; Bravo P; el-Mir MY; Marin JJ Biochim Biophys Acta; 1993 Sep; 1151(1):28-34. PubMed ID: 8357817 [TBL] [Abstract][Full Text] [Related]
12. Bicarbonate-induced activation of taurocholate transport across the basal plasma membrane of human term trophoblast. el-Mir MY; Eleno N; Serrano MA; Bravo P; Marin JJ Am J Physiol; 1991 Jun; 260(6 Pt 1):G887-94. PubMed ID: 2058676 [TBL] [Abstract][Full Text] [Related]
13. Amino acids are potent inhibitors of bile acid uptake by liver plasma membrane vesicles isolated from suckling rats. Bucuvalas JC; Goodrich AL; Blitzer BL; Suchy FJ Pediatr Res; 1985 Dec; 19(12):1298-304. PubMed ID: 4080448 [TBL] [Abstract][Full Text] [Related]
14. Relationship between bile acid transplacental gradients and transport across the fetal-facing plasma membrane of the human trophoblast. Monte MJ; Rodriguez-Bravo T; Macias RI; Bravo P; el-Mir MY; Serrano MA; Lopez-Salva A; Marin JJ Pediatr Res; 1995 Aug; 38(2):156-63. PubMed ID: 7478809 [TBL] [Abstract][Full Text] [Related]
15. Taurocholate transport by human ileal brush border membrane vesicles. Barnard JA; Ghishan FK Gastroenterology; 1987 Nov; 93(5):925-33. PubMed ID: 2443416 [TBL] [Abstract][Full Text] [Related]
16. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum. Lücke H; Stange G; Kinne R; Murer H Biochem J; 1978 Sep; 174(3):951-8. PubMed ID: 581553 [TBL] [Abstract][Full Text] [Related]
17. Human placental L-tyrosine transport: a comparison of brush-border and basal membrane vesicles. Kudo Y; Boyd CA J Physiol; 1990 Jul; 426():381-95. PubMed ID: 2231404 [TBL] [Abstract][Full Text] [Related]
18. Ontogeny of bile acid transport in brush border membrane vesicles from rat ileum. Moyer MS; Heubi JE; Goodrich AL; Balistreri WF; Suchy FJ Gastroenterology; 1986 May; 90(5 Pt 1):1188-96. PubMed ID: 3956937 [TBL] [Abstract][Full Text] [Related]
19. ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles. Adachi Y; Kobayashi H; Kurumi Y; Shouji M; Kitano M; Yamamoto T Hepatology; 1991 Oct; 14(4 Pt 1):655-9. PubMed ID: 1916666 [TBL] [Abstract][Full Text] [Related]
20. Effect of the dimeric bile acid analogue S 0960, a specific inhibitor of the apical sodium-dependent bile salt transporter in the ileum, on the renal handling of taurocholate. Schlattjan JH; Fehsenfeld H; Greven J Arzneimittelforschung; 2003; 53(12):837-43. PubMed ID: 14732964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]