These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22102495)

  • 1. Justification of rapid prototyping in the development cycle of thermoplastic-based lab-on-a-chip.
    Preywisch R; Ritzi-Lehnert M; Drese KS; Röser T
    Electrophoresis; 2011 Nov; 32(22):3115-20. PubMed ID: 22102495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic device fabrication by thermoplastic hot-embossing.
    Yang S; Devoe DL
    Methods Mol Biol; 2013; 949():115-23. PubMed ID: 23329439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of polymer microfluidic systems by hot embossing and laser ablation.
    Locascio LE; Ross DJ; Howell PB; Gaitan M
    Methods Mol Biol; 2006; 339():37-46. PubMed ID: 16790865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructuring of polymer films for sensitive genotyping by real-time PCR on a centrifugal microfluidic platform.
    Focke M; Stumpf F; Faltin B; Reith P; Bamarni D; Wadle S; Müller C; Reinecke H; Schrenzel J; Francois P; Mark D; Roth G; Zengerle R; von Stetten F
    Lab Chip; 2010 Oct; 10(19):2519-26. PubMed ID: 20607174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip.
    Gui L; Ren CL
    Anal Chem; 2006 Sep; 78(17):6215-22. PubMed ID: 16944904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsystem for field-amplified electrokinetic trapping preconcentration of DNA at poly(ethylene terephthalate) membranes.
    Hahn T; O'Sullivan CK; Drese KS
    Anal Chem; 2009 Apr; 81(8):2904-11. PubMed ID: 19296594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical performance of polymer-based microfluidic devices fabricated by computer numerical controlled machining.
    Mecomber JS; Stalcup AM; Hurd D; Halsall HB; Heineman WR; Seliskar CJ; Wehmeyer KR; Limbach PA
    Anal Chem; 2006 Feb; 78(3):936-41. PubMed ID: 16448071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lab-on-chip methodologies for the study of transport in porous media: energy applications.
    Berejnov V; Djilali N; Sinton D
    Lab Chip; 2008 May; 8(5):689-93. PubMed ID: 18432337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft microflow sensors.
    Attia R; Pregibon DC; Doyle PS; Viovy JL; Bartolo D
    Lab Chip; 2009 May; 9(9):1213-8. PubMed ID: 19370239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA detection on plastic: surface activation protocol to convert polycarbonate substrates to biochip platforms.
    Li Y; Wang Z; Ou LM; Yu HZ
    Anal Chem; 2007 Jan; 79(2):426-33. PubMed ID: 17222004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A scalable and modular lab-on-a-chip genetic analysis instrument.
    Kaigala GV; Behnam M; Bidulock AC; Bargen C; Johnstone RW; Elliott DG; Backhouse CJ
    Analyst; 2010 Jul; 135(7):1606-17. PubMed ID: 20369214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels.
    Browne AW; Rust MJ; Jung W; Lee SH; Ahn CH
    Lab Chip; 2009 Oct; 9(20):2941-6. PubMed ID: 19789747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCR microfluidic devices for DNA amplification.
    Zhang C; Xu J; Ma W; Zheng W
    Biotechnol Adv; 2006; 24(3):243-84. PubMed ID: 16326063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An RNA-DNA hybridization assay chip with electrokinetically controlled oil droplet valves for sequential microfluidic operations.
    Weng X; Jiang H; Chon CH; Chen S; Cao H; Li D
    J Biotechnol; 2011 Sep; 155(3):330-7. PubMed ID: 21820019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.
    Liao Y; Song J; Li E; Luo Y; Shen Y; Chen D; Cheng Y; Xu Z; Sugioka K; Midorikawa K
    Lab Chip; 2012 Feb; 12(4):746-9. PubMed ID: 22231027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid prototyping of thermoplastic microfluidic devices via SLA 3D printing.
    Khoo H; Allen WS; Arroyo-Currás N; Hur SC
    Sci Rep; 2024 Jul; 14(1):17646. PubMed ID: 39085631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetically synchronized polymerase chain reaction microchip fabricated in polycarbonate.
    Chen J; Wabuyele M; Chen H; Patterson D; Hupert M; Shadpour H; Nikitopoulos D; Soper SA
    Anal Chem; 2005 Jan; 77(2):658-66. PubMed ID: 15649068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preconcentration of proteins on microfluidic devices using porous silica membranes.
    Foote RS; Khandurina J; Jacobson SC; Ramsey JM
    Anal Chem; 2005 Jan; 77(1):57-63. PubMed ID: 15623278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.