These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22102822)

  • 1. Multiple means to the same end: the genetic basis of acquired stress resistance in yeast.
    Berry DB; Guan Q; Hose J; Haroon S; Gebbia M; Heisler LE; Nislow C; Giaever G; Gasch AP
    PLoS Genet; 2011 Nov; 7(11):e1002353. PubMed ID: 22102822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae.
    Guan Q; Haroon S; Bravo DG; Will JL; Gasch AP
    Genetics; 2012 Oct; 192(2):495-505. PubMed ID: 22851651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state.
    Liu Y; Zhang C; Chen J; Guo L; Li X; Li W; Yu Z; Deng J; Zhang P; Zhang K; Zhang L
    Plant Physiol Biochem; 2013 Mar; 64():92-8. PubMed ID: 23399534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent Mechanisms for Acquired Salt Tolerance versus Growth Resumption Induced by Mild Ethanol Pretreatment in
    McDaniel EA; Stuecker TN; Veluvolu M; Gasch AP; Lewis JA
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30487155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new simple method for isolating multistress-tolerant semidominant mutants of Saccharomyces cerevisiae by one-step selection under lethal hydrogen peroxide stress condition.
    Nakagawa Y; Seita J; Komiyama S; Yamamura H; Hayakawa M; Iimura Y
    Biosci Biotechnol Biochem; 2013; 77(2):224-8. PubMed ID: 23391901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions.
    Moraitis C; Curran BP
    Yeast; 2010 Feb; 27(2):103-14. PubMed ID: 20014153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M; Thevelein JM; Van Dijck P
    Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acquisition of heat shock tolerance by regulation of intracellular redox states.
    Ueom J; Kwon S; Kim S; Chae Y; Lee K
    Biochim Biophys Acta; 2003 Sep; 1642(1-2):9-16. PubMed ID: 12972288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae.
    Auesukaree C; Damnernsawad A; Kruatrachue M; Pokethitiyook P; Boonchird C; Kaneko Y; Harashima S
    J Appl Genet; 2009; 50(3):301-10. PubMed ID: 19638689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione reductase from Brassica rapa affects tolerance and the redox state but not fermentation ability in response to oxidative stress in genetically modified Saccharomyces cerevisiae.
    Yoon HS; Shin SY; Kim YS; Kim IS
    World J Microbiol Biotechnol; 2012 May; 28(5):1901-15. PubMed ID: 22806013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress.
    Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH
    Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress tolerance of the Saccharomyces cerevisiae adenylate cyclase fil1 (CYR1) mutant depends on Hsp26.
    Vianna CR; Ferreira MC; Silva CL; Tanghe A; Neves MJ; Thevelein JM; Rosa CA; Van Dijck P
    J Mol Microbiol Biotechnol; 2010; 19(3):140-6. PubMed ID: 20924200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat stress-induced H(2)O (2) is required for effective expression of heat shock genes in Arabidopsis.
    Volkov RA; Panchuk II; Mullineaux PM; Schöffl F
    Plant Mol Biol; 2006 Jul; 61(4-5):733-46. PubMed ID: 16897488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways.
    Swindell WR; Huebner M; Weber AP
    BMC Genomics; 2007 May; 8():125. PubMed ID: 17519032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness.
    Zakrzewska A; van Eikenhorst G; Burggraaff JE; Vis DJ; Hoefsloot H; Delneri D; Oliver SG; Brul S; Smits GJ
    Mol Biol Cell; 2011 Nov; 22(22):4435-46. PubMed ID: 21965291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance.
    Sardi M; Rovinskiy N; Zhang Y; Gasch AP
    Appl Environ Microbiol; 2016 Oct; 82(19):5838-49. PubMed ID: 27451446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and characterization of genes encoding Pennisetum glaucum ascorbate peroxidase and heat-shock factor: interlinking oxidative and heat-stress responses.
    Reddy RA; Kumar B; Reddy PS; Mishra RN; Mahanty S; Kaul T; Nair S; Sopory SK; Reddy MK
    J Plant Physiol; 2009 Oct; 166(15):1646-59. PubMed ID: 19450902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses.
    Huang YC; Niu CY; Yang CR; Jinn TL
    Plant Physiol; 2016 Oct; 172(2):1182-1199. PubMed ID: 27493213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.