These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22102983)

  • 1. Implicit methods for efficient musculoskeletal simulation and optimal control.
    van den Bogert AJ; Blana D; Heinrich D
    Procedia IUTAM; 2011 Jan; 2(2011):297-316. PubMed ID: 22102983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem.
    De Groote F; Kinney AL; Rao AV; Fregly BJ
    Ann Biomed Eng; 2016 Oct; 44(10):2922-2936. PubMed ID: 27001399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient trajectory optimization for curved running using a 3D musculoskeletal model with implicit dynamics.
    Nitschke M; Dorschky E; Heinrich D; Schlarb H; Eskofier BM; Koelewijn AD; van den Bogert AJ
    Sci Rep; 2020 Oct; 10(1):17655. PubMed ID: 33077752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait.
    Remy CD; Thelen DG
    J Biomech Eng; 2009 Mar; 131(3):031005. PubMed ID: 19154064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
    Lee LF; Umberger BR
    PeerJ; 2016; 4():e1638. PubMed ID: 26835184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials.
    Kia M; Stylianou AP; Guess TM
    Med Eng Phys; 2014 Mar; 36(3):335-44. PubMed ID: 24418154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
    Lin YC; Walter JP; Pandy MG
    Ann Biomed Eng; 2018 Aug; 46(8):1216-1227. PubMed ID: 29671152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does joint impedance improve dynamic leg simulations with explicit and implicit solvers?
    Bahdasariants S; Barela AMF; Gritsenko V; Bacca O; Barela JA; Yakovenko S
    PLoS One; 2023; 18(7):e0282130. PubMed ID: 37399198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does joint impedance improve dynamic leg simulations with explicit and implicit solvers?
    Bahdasariants S; Barela AMF; Gritsenko V; Bacca O; Barela JA; Yakovenko S
    bioRxiv; 2023 Feb; ():. PubMed ID: 36798166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study.
    Fey NP; Klute GK; Neptune RR
    J Biomech Eng; 2012 Nov; 134(11):111005. PubMed ID: 23387787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Joint Moments During Turning Maneuvers in Alpine Skiing Using a Three Dimensional Musculoskeletal Skier Model and a Forward Dynamics Optimization Framework.
    Heinrich D; Van den Bogert AJ; Nachbauer W
    Front Bioeng Biotechnol; 2022; 10():894568. PubMed ID: 35814020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim.
    Porsa S; Lin YC; Pandy MG
    Ann Biomed Eng; 2016 Aug; 44(8):2542-2557. PubMed ID: 26715209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of aperiodic bipedal sprinting.
    Celik H; Piazza SJ
    J Biomech Eng; 2013 Aug; 135(8):81008. PubMed ID: 23722442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does ankle-foot orthosis stiffness affect gait in patients with lower limb salvage?
    Russell Esposito E; Blanck RV; Harper NG; Hsu JR; Wilken JM
    Clin Orthop Relat Res; 2014 Oct; 472(10):3026-35. PubMed ID: 24817379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approximate stochastic optimal control framework to simulate nonlinear neuro-musculoskeletal models in the presence of noise.
    Van Wouwe T; Ting LH; De Groote F
    PLoS Comput Biol; 2022 Jun; 18(6):e1009338. PubMed ID: 35675227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change the direction: 3D optimal control simulation by directly tracking marker and ground reaction force data.
    Nitschke M; Marzilger R; Leyendecker S; Eskofier BM; Koelewijn AD
    PeerJ; 2023; 11():e14852. PubMed ID: 36778146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and validation of a general purpose robotic testing system for musculoskeletal applications.
    Noble LD; Colbrunn RW; Lee DG; van den Bogert AJ; Davis BL
    J Biomech Eng; 2010 Feb; 132(2):025001. PubMed ID: 20370251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Inverse Dynamics Optimization Formulation With Recursive B-Spline Derivatives and Partition of Unity Contacts: Demonstration Using Two-Dimensional Musculoskeletal Arm and Gait.
    Xiang Y
    J Biomech Eng; 2019 Mar; 141(3):. PubMed ID: 30615016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models.
    Valentin J; Sprenger M; Pflüger D; Röhrle O
    Int J Numer Method Biomed Eng; 2018 May; 34(5):e2965. PubMed ID: 29427559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time simulation of three-dimensional shoulder girdle and arm dynamics.
    Chadwick EK; Blana D; Kirsch RF; van den Bogert AJ
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):1947-56. PubMed ID: 24956613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.