These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22102984)

  • 21. A catechol biosensor based on a gold nanoparticles encapsulated-dendrimer.
    Singh RP
    Analyst; 2011 Mar; 136(6):1216-21. PubMed ID: 21240422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laccase-based biosensor for the determination of polyphenol index in wine.
    Di Fusco M; Tortolini C; Deriu D; Mazzei F
    Talanta; 2010 Apr; 81(1-2):235-40. PubMed ID: 20188914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite.
    Wang S; Tan Y; Zhao D; Liu G
    Biosens Bioelectron; 2008 Jul; 23(12):1781-7. PubMed ID: 18387292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Red wine phenolic complexes and their in vitro antioxidant activity.
    Sun B; Spranger I; Yang J; Leandro C; Guo L; Canário S; Zhao Y; Wu C
    J Agric Food Chem; 2009 Sep; 57(18):8623-7. PubMed ID: 19715276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers.
    Mita DG; Attanasio A; Arduini F; Diano N; Grano V; Bencivenga U; Rossi S; Amine A; Moscone D
    Biosens Bioelectron; 2007 Aug; 23(1):60-5. PubMed ID: 17467970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks.
    Tang L; Zeng G; Liu J; Xu X; Zhang Y; Shen G; Li Y; Liu C
    Anal Bioanal Chem; 2008 May; 391(2):679-85. PubMed ID: 18398603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated electronic tongue based on potentiometric sensors for the determination of a trinary anionic surfactant mixture.
    Cortina M; Ecker C; Calvo D; del Valle M
    J Pharm Biomed Anal; 2008 Jan; 46(2):213-8. PubMed ID: 17964750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of Laccase and Tyrosinase on the Antioxidant Capacity of Selected Phenolic Compounds on Human Cell Lines.
    Riebel M; Sabel A; Claus H; Fronk P; Xia N; Li H; König H; Decker H
    Molecules; 2015 Sep; 20(9):17194-207. PubMed ID: 26393557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antioxidant capacity of phenolic compounds on human cell lines as affected by grape-tyrosinase and Botrytis-laccase oxidation.
    Riebel M; Sabel A; Claus H; Xia N; Li H; König H; Decker H; Fronk P
    Food Chem; 2017 Aug; 229():779-789. PubMed ID: 28372244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amperometric biosensor for the determination of phenolic compounds using a tyrosinase graphite electrode in a flow injection system.
    Ortega F; Domínguez E; Jönsson-Pettersson G; Gorton L
    J Biotechnol; 1993 Dec; 31(3):289-300. PubMed ID: 7764439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds.
    Arecchi A; Scampicchio M; Drusch S; Mannino S
    Anal Chim Acta; 2010 Feb; 659(1-2):133-6. PubMed ID: 20103115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds.
    Lu L; Zhang L; Zhang X; Huan S; Shen G; Yu R
    Anal Chim Acta; 2010 Apr; 665(2):146-51. PubMed ID: 20417324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immobilised tyrosinase-based biosensor for the detection of tea polyphenols.
    Abhijith KS; Kumar PV; Kumar MA; Thakur MS
    Anal Bioanal Chem; 2007 Dec; 389(7-8):2227-34. PubMed ID: 17928999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyphenol biosensor based on laccase immobilized onto silver nanoparticles/multiwalled carbon nanotube/polyaniline gold electrode.
    Rawal R; Chawla S; Pundir CS
    Anal Biochem; 2011 Dec; 419(2):196-204. PubMed ID: 21855525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations.
    Avramescu A; Andreescu S; Noguer T; Bala C; Andreescu D; Marty JL
    Anal Bioanal Chem; 2002 Sep; 374(1):25-32. PubMed ID: 12207236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amperometric tyrosinase biosensor based on polyacrylamide microgels.
    Hervás Pérez JP; Sánchez-Paniagua López M; López-Cabarcos E; López-Ruiz B
    Biosens Bioelectron; 2006 Sep; 22(3):429-39. PubMed ID: 16806888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards reliable estimation of an "electronic tongue" predictive ability from PLS regression models in wine analysis.
    Kirsanov D; Mednova O; Vietoris V; Kilmartin PA; Legin A
    Talanta; 2012 Feb; 90():109-16. PubMed ID: 22340124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosensors for the determination of phenolic metabolites.
    Litescu SC; Eremia S; Radu GL
    Adv Exp Med Biol; 2010; 698():234-40. PubMed ID: 21520715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laccase and Tyrosinase Biosensors Used in the Determination of Hydroxycinnamic Acids.
    Bounegru AV; Apetrei C
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34062799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct electrochemistry of laccase immobilized on au nanoparticles encapsulated-dendrimer bonded conducting polymer: application for a catechin sensor.
    Rahman MA; Noh HB; Shim YB
    Anal Chem; 2008 Nov; 80(21):8020-7. PubMed ID: 18841943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.