BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22103103)

  • 1. Growth time-dependent density and surface evolution of silicon nanowires in a vapor-liquid-solid process.
    Lee CY; Kim GS; Lee SY; Kim TH; Seo DW; Lee SK
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6946-52. PubMed ID: 22103103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platinum assisted vapor-liquid-solid growth of er-si nanowires and their optical properties.
    Kim MH; Kim IS; Park YH; Park TE; Shin JH; Choi HJ
    Nanoscale Res Lett; 2009 Nov; 5(2):286-90. PubMed ID: 20672113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural modulation of silicon nanowires by combining a high gas flow rate with metal catalysts.
    Seo D; Lee J; Kim SW; Kim I; Na J; Hong MH; Choi HJ
    Nanoscale Res Lett; 2015; 10():190. PubMed ID: 26034411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Annealed Au-assisted epitaxial growth of si nanowires: control of alignment and density.
    Park YS; Jung DH; Kim HJ; Lee JS
    Langmuir; 2015 Apr; 31(14):4290-8. PubMed ID: 25291628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of surface migration of gold particles on Si nanowires.
    Kawashima T; Mizutani T; Nakagawa T; Torii H; Saitoh T; Komori K; Fujii M
    Nano Lett; 2008 Jan; 8(1):362-8. PubMed ID: 18095731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires.
    Wang Y; Lew KK; Ho TT; Pan L; Novak SW; Dickey EC; Redwing JM; Mayer TS
    Nano Lett; 2005 Nov; 5(11):2139-43. PubMed ID: 16277441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of taper- and rodlike si nanowires on Si(x)Ge(1-x) substrate.
    Chueh YL; Chou LJ; Hsu CM; Kung SC
    J Phys Chem B; 2005 Nov; 109(46):21831-5. PubMed ID: 16853835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tapering control of Si nanowires grown from SiCl₄ at reduced pressure.
    Krylyuk S; Davydov AV; Levin I
    ACS Nano; 2011 Jan; 5(1):656-64. PubMed ID: 21158417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.
    Tang W; Picraux ST; Huang JY; Liu X; Tu KN; Dayeh SA
    Nano Lett; 2013; 13(12):6009-15. PubMed ID: 24274698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the nature of various growth facets at the interfaces of gold catalyzed-silicon nanowires.
    Cho TS; Hwang GS
    J Nanosci Nanotechnol; 2013 May; 13(5):3480-2. PubMed ID: 23858883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of silicon nanowires on H-terminated Si {111} surface templates studied by transmission electron microscopy.
    Ozaki N; Ohno Y; Kikkawa J; Takeda S
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i25-9. PubMed ID: 16157636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focused electron beam induced deposition of gold catalyst templates for Si-nanowire synthesis.
    Hochleitner G; Steinmair M; Lugstein A; Roediger P; Wanzenboeck HD; Bertagnolli E
    Nanotechnology; 2011 Jan; 22(1):015302. PubMed ID: 21135454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of diameter-dependent growth direction of silicon nanowires.
    Wang CX; Hirano M; Hosono H
    Nano Lett; 2006 Jul; 6(7):1552-5. PubMed ID: 16834448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon nanowires prepared by electron beam evaporation in ultrahigh vacuum.
    Xu X; Li S; Wang Y; Fan T; Jiang Y; Huang L; He Q; Ao T
    Nanoscale Res Lett; 2012 May; 7(1):243. PubMed ID: 22559207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-area silicon nanowires from silicon monoxide for solar cell applications.
    Zhang ML; Mahmood I; Fan X; Xu G; Wong NB
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8271-7. PubMed ID: 21121327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, morphology and compositional evolution of silicon nanowires directly grown on SnO(2) substrates.
    Yu L; Alet PJ; Picardi G; Maurin I; Cabarrocas PR
    Nanotechnology; 2008 Dec; 19(48):485605. PubMed ID: 21836306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires.
    Yu L; O'Donnell B; Foldyna M; Roca i Cabarrocas P
    Nanotechnology; 2012 May; 23(19):194011. PubMed ID: 22539188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of silicon nanowires studied by advanced transmission electron microscopy.
    Agati M; Amiard G; Borgne VL; Castrucci P; Dolbec R; De Crescenzi M; El Khakani MA; Boninelli S
    Beilstein J Nanotechnol; 2017; 8():440-445. PubMed ID: 28326234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing Morphology in Epitaxial Silicon Nanowires: The Role of Gold, Surface Chemistry, and Phosphorus Doping.
    Kim S; Hill DJ; Pinion CW; Christesen JD; McBride JR; Cahoon JF
    ACS Nano; 2017 May; 11(5):4453-4462. PubMed ID: 28323413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.