These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22103129)

  • 1. The specific hybridization of p53 gene on bead-quantum dot complex in microfluidic chip.
    Yoo JH; Kim JS
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7082-5. PubMed ID: 22103129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The detection of p53 gene via fluorescence quenching of quantum dot in microfluidic chip.
    Yoo JH; Yoo IS; Yoon WJ; Kim JS
    J Nanosci Nanotechnol; 2012 May; 12(5):4109-14. PubMed ID: 22852354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of K-Ras oncogene using magnetic beads-quantum dots in microfluidic chip.
    Noh HN; Kim JS
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5240-4. PubMed ID: 23882748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Chen L; Algar WR; Tavares AJ; Krull UJ
    Anal Bioanal Chem; 2011 Jan; 399(1):133-41. PubMed ID: 20978748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Noor MO; Tavares AJ; Krull UJ
    Anal Chim Acta; 2013 Jul; 788():148-57. PubMed ID: 23845494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Tavares AJ; Noor MO; Vannoy CH; Algar WR; Krull UJ
    Anal Chem; 2012 Jan; 84(1):312-9. PubMed ID: 22136151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Microfluidic Microbeads Fluorescence Assay with Quantum Dots-Bead-DNA Probe.
    Ankireddy SR; Kim J
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2897-9. PubMed ID: 27455729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Dot-Bead-DNA Probe-Based Hybridization Fluorescence Assays on Microfluidic Chips.
    Ankireddy SR; Kim J
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7918-21. PubMed ID: 26726440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of DNAs by Using Dual Packed Polystyrene Bead-Quantum Dots in a Microfluidic Chip.
    Le NT; Kim JS
    J Nanosci Nanotechnol; 2015 Jan; 15(1):100-4. PubMed ID: 26328310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.
    Shahmuradyan A; Krull UJ
    Anal Chem; 2016 Mar; 88(6):3186-93. PubMed ID: 26866462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of p53 gene by using CdSe/ZnS conjugation and hybridization.
    Yoo JH; Kim JS
    J Nanosci Nanotechnol; 2011 May; 11(5):4343-6. PubMed ID: 21780454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.
    Yang LH; Ahn DJ; Koo E
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():625-30. PubMed ID: 27612755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of K-ras oncogene from the human genomic DNA using ultrasonication and a quantum dots-based microfluidic chip.
    Noh HN; Kim JS
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6033-7. PubMed ID: 24205594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paper-based platform for detection by hybridization using intrinsically labeled fluorescent oligonucleotide probes on quantum dots.
    Shahmuradyan A; Moazami-Goudarzi M; Kitazume F; Espie GS; Krull UJ
    Analyst; 2019 Feb; 144(4):1223-1229. PubMed ID: 30534674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid DNA hybridization analysis using a PDMS microfluidic sensor and a molecular beacon.
    Kim S; Chen L; Lee S; Seong GH; Choo J; Lee EK; Oh CH; Lee S
    Anal Sci; 2007 Apr; 23(4):401-5. PubMed ID: 17420542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dot/carrier-protein/haptens conjugate as a detection nanobioprobe for FRET-based immunoassay of small analytes with all-fiber microfluidic biosensing platform.
    Long F; Gu C; Gu AZ; Shi H
    Anal Chem; 2012 Apr; 84(8):3646-53. PubMed ID: 22455400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence.
    Algar WR; Krull UJ
    Langmuir; 2010 Apr; 26(8):6041-7. PubMed ID: 20000340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a multi-channel microfluidic chip on the simultaneous detection of DNAs by using microbead-quantum dots.
    Le NT; Kim JS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9465-9. PubMed ID: 25971084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors.
    Vannoy CH; Chong L; Le C; Krull UJ
    Anal Chim Acta; 2013 Jan; 759():92-9. PubMed ID: 23260681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.