These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 2210338)

  • 1. Influence of respiratory substrate on the cytochrome content of Shewanella putrefaciens.
    Morris CJ; Gibson DM; Ward FB
    FEMS Microbiol Lett; 1990 Jun; 57(3):259-62. PubMed ID: 2210338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome.
    Zhao JS; Manno D; Hawari J
    Microbiology (Reading); 2008 Apr; 154(Pt 4):1026-1037. PubMed ID: 18375796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochromes of the trimethylamine N-oxide anaerobic respiratory pathway of Escherichia coli.
    Bragg PD; Hackett NR
    Biochim Biophys Acta; 1983 Oct; 725(1):168-77. PubMed ID: 6313050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fe(III) reduction activity and cytochrome content of Shewanella putrefaciens grown on ten compounds as sole terminal electron acceptor.
    Blakeney MD; Moulaei T; DiChristina TJ
    Microbiol Res; 2000 Jul; 155(2):87-94. PubMed ID: 10950190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and activity of Shewanella putrefaciens isolated from spoiling fish.
    Jørgensen BR; Huss HH
    Int J Food Microbiol; 1989 Aug; 9(1):51-62. PubMed ID: 2641275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species.
    Dos Santos JP; Iobbi-Nivol C; Couillault C; Giordano G; Méjean V
    J Mol Biol; 1998 Nov; 284(2):421-33. PubMed ID: 9813127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide.
    Myers JM; Myers CR
    Appl Environ Microbiol; 2001 Jan; 67(1):260-9. PubMed ID: 11133454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro study of TMAO reduction by Shewanella putrefaciens isolated from cod fillets packed in modified atmosphere.
    Boskou G; Debevere J
    Food Addit Contam; 1998; 15(2):229-36. PubMed ID: 9602930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200.
    Picardal FW; Arnold RG; Couch H; Little AM; Smith ME
    Appl Environ Microbiol; 1993 Nov; 59(11):3763-70. PubMed ID: 8285682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and properties of a novel cytochrome: flavocytochrome c from Shewanella putrefaciens.
    Morris CJ; Black AC; Pealing SL; Manson FD; Chapman SK; Reid GA; Gibson DM; Ward FB
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):587-93. PubMed ID: 8093012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735: Na+-stimulated anaerobic transport in cells and membrane vesicles.
    Stenberg E; Ringø E; Strøm AR
    Appl Environ Microbiol; 1984 May; 47(5):1090-5. PubMed ID: 6430228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial reduction of trimethylamine oxide.
    Barrett EL; Kwan HS
    Annu Rev Microbiol; 1985; 39():131-49. PubMed ID: 3904597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conserved histidine in cytochrome c maturation permease CcmB of Shewanella putrefaciens is required for anaerobic growth below a threshold standard redox potential.
    Dale JR; Wade R; Dichristina TJ
    J Bacteriol; 2007 Feb; 189(3):1036-43. PubMed ID: 17142390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Outer membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83-kDa c-type cytochrome.
    Myers CR; Myers JM
    Biochim Biophys Acta; 1997 Jun; 1326(2):307-18. PubMed ID: 9218561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient respiration on TMAO requires TorD and TorE auxiliary proteins in Shewanella oneidensis.
    Lemaire ON; Honoré FA; Jourlin-Castelli C; Méjean V; Fons M; Iobbi-Nivol C
    Res Microbiol; 2016 Oct; 167(8):630-637. PubMed ID: 27288570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trimethylamine N-oxide respiration by aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114.
    Arata H; Serikawa Y; Takamiya K
    J Biochem; 1988 Jun; 103(6):1011-5. PubMed ID: 3170512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells.
    Wu X; Zou L; Huang Y; Qiao Y; Long ZE; Liu H; Li CM
    Enzyme Microb Technol; 2018 Aug; 115():23-28. PubMed ID: 29859599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration.
    McCrindle SL; Kappler U; McEwan AG
    Adv Microb Physiol; 2005; 50():147-98. PubMed ID: 16221580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of trimethylamine N-oxide reductase from aerobic photosynthetic bacterium Roseobacter denitrificans.
    Arata H; Shimizu M; Takamiya K
    J Biochem; 1992 Oct; 112(4):470-5. PubMed ID: 1337081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a small tetraheme cytochrome c and a flavocytochrome c as two of the principal soluble cytochromes c in Shewanella oneidensis strain MR1.
    Tsapin AI; Vandenberghe I; Nealson KH; Scott JH; Meyer TE; Cusanovich MA; Harada E; Kaizu T; Akutsu H; Leys D; Van Beeumen JJ
    Appl Environ Microbiol; 2001 Jul; 67(7):3236-44. PubMed ID: 11425747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.