These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 22103539)

  • 21. How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events.
    Vasil ML
    Biometals; 2007 Jun; 20(3-4):587-601. PubMed ID: 17186376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344.
    Wibberg D; Luque-Almagro VM; Igeño MI; Bremges A; Roldán MD; Merchán F; Sáez LP; Guijo MI; Manso MI; Macías D; Cabello P; Becerra G; Ibáñez MI; Carmona MI; Escribano MM; Castillo F; Sczyrba A; Moreno-Vivián C; Blasco R; Pühler A; Schlüter A
    J Biotechnol; 2014 Apr; 175():67-8. PubMed ID: 24553071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial degradation of cyanide and its metal complexes under alkaline conditions.
    Luque-Almagro VM; Huertas MJ; Martínez-Luque M; Moreno-Vivián C; Roldán MD; García-Gil LJ; Castillo F; Blasco R
    Appl Environ Microbiol; 2005 Feb; 71(2):940-7. PubMed ID: 15691951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Regulation of gene expression in the bacterial cell by fur family proteins].
    Szafran M; Olczak T
    Postepy Biochem; 2008; 54(4):423-30. PubMed ID: 19248589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the Dihydrodipicolinate Synthase DapA1 on Iron Homeostasis During Cyanide Assimilation by the Alkaliphilic Bacterium
    Olaya-Abril A; Pérez MD; Cabello P; Martignetti D; Sáez LP; Luque-Almagro VM; Moreno-Vivián C; Roldán MD
    Front Microbiol; 2020; 11():28. PubMed ID: 32038602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New evolving strategies revealed by transcriptomic analysis of a fur
    Becerra G; Igeño MI; Merchán F; Sánchez-Clemente R; Blasco R
    Microb Biotechnol; 2020 Jan; 13(1):148-161. PubMed ID: 31006999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron regulation and pathogenicity in Erwinia chrysanthemi 3937: role of the Fur repressor protein.
    Franza T; Sauvage C; Expert D
    Mol Plant Microbe Interact; 1999 Feb; 12(2):119-28. PubMed ID: 9926414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Cyanide-Induced 3-Cyanoalanine Nitrilase in the Cyanide-Assimilating Bacterium Pseudomonas pseudoalcaligenes Strain CECT 5344.
    Acera F; Carmona MI; Castillo F; Quesada A; Blasco R
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235872
    [No Abstract]   [Full Text] [Related]  

  • 29. Proteomic Analysis of Arsenic Resistance during Cyanide Assimilation by
    Biełło KA; Cabello P; Rodríguez-Caballero G; Sáez LP; Luque-Almagro VM; Roldán MD; Olaya-Abril A; Moreno-Vivián C
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Members of the Fur protein family regulate iron and zinc transport in E. coli and characteristics of the Fur-regulated fhuF protein.
    Hantke K
    J Mol Microbiol Biotechnol; 2002 May; 4(3):217-22. PubMed ID: 11931550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional specialization within the Fur family of metalloregulators.
    Lee JW; Helmann JD
    Biometals; 2007 Jun; 20(3-4):485-99. PubMed ID: 17216355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the Vibrio alginolyticusfur gene and localization of essential amino acid sites in fur by site-directed mutagenesis.
    Liu Q; Wang P; Ma Y; Zhang Y
    J Mol Microbiol Biotechnol; 2007; 13(1-3):15-21. PubMed ID: 17693709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ferric uptake regulator protein: binding free energy calculations and per-residue free energy decomposition.
    Ahmad R; Brandsdal BO; Michaud-Soret I; Willassen NP
    Proteins; 2009 May; 75(2):373-86. PubMed ID: 18831042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay.
    Stojiljkovic I; Bäumler AJ; Hantke K
    J Mol Biol; 1994 Feb; 236(2):531-45. PubMed ID: 8107138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli.
    Massé E; Gottesman S
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4620-5. PubMed ID: 11917098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites.
    Dian C; Vitale S; Leonard GA; Bahlawane C; Fauquant C; Leduc D; Muller C; de Reuse H; Michaud-Soret I; Terradot L
    Mol Microbiol; 2011 Mar; 79(5):1260-75. PubMed ID: 21208302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron uptake regulation in Pseudomonas aeruginosa.
    Cornelis P; Matthijs S; Van Oeffelen L
    Biometals; 2009 Feb; 22(1):15-22. PubMed ID: 19130263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators.
    Fillat MF
    Arch Biochem Biophys; 2014 Mar; 546():41-52. PubMed ID: 24513162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the DNA-binding site in the ferric uptake regulator protein from Escherichia coli by UV crosslinking and mass spectrometry.
    Tiss A; Barre O; Michaud-Soret I; Forest E
    FEBS Lett; 2005 Oct; 579(25):5454-60. PubMed ID: 16212958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of Iron Uptake by Fine-Tuning the Iron Responsiveness of the Iron Sensor Fur.
    Choi J; Ryu S
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.