BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 22103608)

  • 1. Energy metabolism in nuclear reprogramming.
    Folmes CD; Nelson TJ; Terzic A
    Biomark Med; 2011 Dec; 5(6):715-29. PubMed ID: 22103608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy metabolism plasticity enables stemness programs.
    Folmes CDL; Nelson TJ; Dzeja PP; Terzic A
    Ann N Y Acad Sci; 2012 Apr; 1254():82-89. PubMed ID: 22548573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.
    Folmes CD; Nelson TJ; Martinez-Fernandez A; Arrell DK; Lindor JZ; Dzeja PP; Ikeda Y; Perez-Terzic C; Terzic A
    Cell Metab; 2011 Aug; 14(2):264-71. PubMed ID: 21803296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear reprogramming with c-Myc potentiates glycolytic capacity of derived induced pluripotent stem cells.
    Folmes CD; Martinez-Fernandez A; Faustino RS; Yamada S; Perez-Terzic C; Nelson TJ; Terzic A
    J Cardiovasc Transl Res; 2013 Feb; 6(1):10-21. PubMed ID: 23247633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolome and metaboproteome remodeling in nuclear reprogramming.
    Folmes CD; Arrell DK; Zlatkovic-Lindor J; Martinez-Fernandez A; Perez-Terzic C; Nelson TJ; Terzic A
    Cell Cycle; 2013 Aug; 12(15):2355-65. PubMed ID: 23839047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.
    Menendez JA; Vellon L; Oliveras-Ferraros C; CufĂ­ S; Vazquez-Martin A
    Cell Cycle; 2011 Nov; 10(21):3658-77. PubMed ID: 22052357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling.
    Hsu YC; Chen CT; Wei YH
    Biochim Biophys Acta; 2016 Apr; 1860(4):686-93. PubMed ID: 26779594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial regulation in pluripotent stem cells.
    Xu X; Duan S; Yi F; Ocampo A; Liu GH; Izpisua Belmonte JC
    Cell Metab; 2013 Sep; 18(3):325-32. PubMed ID: 23850316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial and metabolic remodeling during reprogramming and differentiation of the reprogrammed cells.
    Choi HW; Kim JH; Chung MK; Hong YJ; Jang HS; Seo BJ; Jung TH; Kim JS; Chung HM; Byun SJ; Han SG; Seo HG; Do JT
    Stem Cells Dev; 2015 Jun; 24(11):1366-73. PubMed ID: 25590788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomic and Transcriptional Analyses Reveal Atmospheric Oxygen During Human Induced Pluripotent Stem Cell Generation Impairs Metabolic Reprogramming.
    Spyrou J; Gardner DK; Harvey AJ
    Stem Cells; 2019 Aug; 37(8):1042-1056. PubMed ID: 31042329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MiR-31/SDHA Axis Regulates Reprogramming Efficiency through Mitochondrial Metabolism.
    Lee MR; Mantel C; Lee SA; Moon SH; Broxmeyer HE
    Stem Cell Reports; 2016 Jul; 7(1):1-10. PubMed ID: 27346679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of mitochondrial biogenesis and bioenergetic metabolism upon in vitro and in vivo differentiation of human ES and iPS cells.
    Prigione A; Adjaye J
    Int J Dev Biol; 2010; 54(11-12):1729-41. PubMed ID: 21305470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy metabolism in the acquisition and maintenance of stemness.
    Folmes CD; Terzic A
    Semin Cell Dev Biol; 2016 Apr; 52():68-75. PubMed ID: 26868758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming.
    Panopoulos AD; Yanes O; Ruiz S; Kida YS; Diep D; Tautenhahn R; HerrerĂ­as A; Batchelder EM; Plongthongkum N; Lutz M; Berggren WT; Zhang K; Evans RM; Siuzdak G; Izpisua Belmonte JC
    Cell Res; 2012 Jan; 22(1):168-77. PubMed ID: 22064701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial Spare Respiratory Capacity Is Negatively Correlated with Nuclear Reprogramming Efficiency.
    Zhou Y; Al-Saaidi RA; Fernandez-Guerra P; Freude KK; Olsen RK; Jensen UB; Gregersen N; Hyttel P; Bolund L; Aagaard L; Bross P; Luo Y
    Stem Cells Dev; 2017 Feb; 26(3):166-176. PubMed ID: 27784195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial bioenergetic function and metabolic plasticity in stem cell differentiation and cellular reprogramming.
    Chen CT; Hsu SH; Wei YH
    Biochim Biophys Acta; 2012 May; 1820(5):571-6. PubMed ID: 21983491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolome Profiling of Partial and Fully Reprogrammed Induced Pluripotent Stem Cells.
    Park SJ; Lee SA; Prasain N; Bae D; Kang H; Ha T; Kim JS; Hong KS; Mantel C; Moon SH; Broxmeyer HE; Lee MR
    Stem Cells Dev; 2017 May; 26(10):734-742. PubMed ID: 28346802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitophagy-driven metabolic switch reprograms stem cell fate.
    Naik PP; Birbrair A; Bhutia SK
    Cell Mol Life Sci; 2019 Jan; 76(1):27-43. PubMed ID: 30267101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The TCL1 function revisited focusing on metabolic requirements of stemness.
    Fiorenza MT; Rava A
    Cell Cycle; 2019 Nov; 18(22):3055-3063. PubMed ID: 31564197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial metabolism transition cooperates with nuclear reprogramming during induced pluripotent stem cell generation.
    Liu W; Long Q; Chen K; Li S; Xiang G; Chen S; Liu X; Li Y; Yang L; Dong D; Jiang C; Feng Z; Qin D; Liu X
    Biochem Biophys Res Commun; 2013 Feb; 431(4):767-71. PubMed ID: 23333381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.