These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 22103644)
1. Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection. Zhang WY; Zhang W; Liu Z; Li C; Zhu Z; Yang CJ Anal Chem; 2012 Jan; 84(1):350-5. PubMed ID: 22103644 [TBL] [Abstract][Full Text] [Related]
2. Kinetic capillary electrophoresis-based affinity screening of aptamer clones. Yunusov D; So M; Shayan S; Okhonin V; Musheev MU; Berezovski MV; Krylov SN Anal Chim Acta; 2009 Jan; 631(1):102-7. PubMed ID: 19046686 [TBL] [Abstract][Full Text] [Related]
3. Monoclonal surface display SELEX for simple, rapid, efficient, and cost-effective aptamer enrichment and identification. Zhu Z; Song Y; Li C; Zou Y; Zhu L; An Y; Yang CJ Anal Chem; 2014 Jun; 86(12):5881-8. PubMed ID: 24863283 [TBL] [Abstract][Full Text] [Related]
4. Selection of a DNA aptamer that binds 8-OHdG using GMP-agarose. Miyachi Y; Shimizu N; Ogino C; Fukuda H; Kondo A Bioorg Med Chem Lett; 2009 Jul; 19(13):3619-22. PubMed ID: 19450981 [TBL] [Abstract][Full Text] [Related]
5. Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR. Leng X; Zhang W; Wang C; Cui L; Yang CJ Lab Chip; 2010 Nov; 10(21):2841-3. PubMed ID: 20835492 [TBL] [Abstract][Full Text] [Related]
6. Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX). Huang CJ; Lin HI; Shiesh SC; Lee GB Biosens Bioelectron; 2010 Mar; 25(7):1761-6. PubMed ID: 20061133 [TBL] [Abstract][Full Text] [Related]
7. Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics. Zhang H; Jenkins G; Zou Y; Zhu Z; Yang CJ Anal Chem; 2012 Apr; 84(8):3599-606. PubMed ID: 22455457 [TBL] [Abstract][Full Text] [Related]
8. Single-primer-limited amplification: a method to generate random single-stranded DNA sub-library for aptamer selection. He CZ; Zhang KH; Wang T; Wan QS; Hu PP; Hu MD; Huang DQ; Lv NH Anal Biochem; 2013 Sep; 440(1):63-70. PubMed ID: 23711720 [TBL] [Abstract][Full Text] [Related]
9. Aptamer-Based Sensitive Detection of Target Molecules via RT-PCR Signal Amplification. Liao S; Liu Y; Zeng J; Li X; Shao N; Mao A; Wang L; Ma J; Cen H; Wang Y; Zhang X; Zhang R; Wei Z; Wang X Bioconjug Chem; 2010 Dec; 21(12):2183-9. PubMed ID: 21067135 [TBL] [Abstract][Full Text] [Related]
10. Single-stranded DNA (ssDNA) production in DNA aptamer generation. Marimuthu C; Tang TH; Tominaga J; Tan SC; Gopinath SC Analyst; 2012 Mar; 137(6):1307-15. PubMed ID: 22314701 [TBL] [Abstract][Full Text] [Related]
11. Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing. Savory N; Abe K; Sode K; Ikebukuro K Biosens Bioelectron; 2010 Dec; 26(4):1386-91. PubMed ID: 20692149 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of aptamer isolation by conventional and microfluidic strategies. Meng X; Wen K; Citartan M; Lin Q Analyst; 2023 Feb; 148(4):787-798. PubMed ID: 36688616 [TBL] [Abstract][Full Text] [Related]
13. [Screening and characterization of DNA aptamers with hTNF-alpha binding and neutralizing activity]. Guo KT; Yan XR; Huang GJ; Xu CX; Chai YS; Zhang ZQ Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):730-3. PubMed ID: 15971588 [TBL] [Abstract][Full Text] [Related]
14. Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR. Leng X; Yang CJ Methods Mol Biol; 2013; 949():413-22. PubMed ID: 23329457 [TBL] [Abstract][Full Text] [Related]
15. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus. Duan N; Wu S; Chen X; Huang Y; Wang Z J Agric Food Chem; 2012 Apr; 60(16):4034-8. PubMed ID: 22480209 [TBL] [Abstract][Full Text] [Related]
16. [In vitro selection of single strand deoxyribonucleic acid aptamers binding to cells from patients with acute myeloblastic leukemia]. Zhu P; Wang G; Zhang S; Xu Y; Peng M; Yin H; Chen Y; Tan S; Chen F Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2012 Aug; 37(8):771-6. PubMed ID: 22954922 [TBL] [Abstract][Full Text] [Related]
17. Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Dwivedi HP; Smiley RD; Jaykus LA Appl Microbiol Biotechnol; 2010 Aug; 87(6):2323-34. PubMed ID: 20582587 [TBL] [Abstract][Full Text] [Related]
18. In vitro selection and identification of ssDNA aptamers recognizing the Ras protein. Wang ZW; Wu HB; Mao ZF; Hu XP; Zhang H; Hu ZP; Ren ZL Mol Med Rep; 2014 Sep; 10(3):1481-8. PubMed ID: 24938205 [TBL] [Abstract][Full Text] [Related]
19. Selection of DNA aptamers that bind to four organophosphorus pesticides. Wang L; Liu X; Zhang Q; Zhang C; Liu Y; Tu K; Tu J Biotechnol Lett; 2012 May; 34(5):869-74. PubMed ID: 22261866 [TBL] [Abstract][Full Text] [Related]
20. Non-SELEX selection of aptamers. Berezovski M; Musheev M; Drabovich A; Krylov SN J Am Chem Soc; 2006 Feb; 128(5):1410-1. PubMed ID: 16448086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]