These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22104318)

  • 21. A comparative study of aerosol deposition in different lung models.
    Yu CP; Diu CK
    Am Ind Hyg Assoc J; 1982 Jan; 43(1):54-65. PubMed ID: 7055086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling airflow and particle transport/deposition in pulmonary airways.
    Kleinstreuer C; Zhang Z; Li Z
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):128-38. PubMed ID: 18674643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A theoretical approach to the deposition and clearance of fibers with variable size in the human respiratory tract.
    Sturm R; Hofmann W
    J Hazard Mater; 2009 Oct; 170(1):210-8. PubMed ID: 19477590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of radon lung dosimetry models for the estimation of dose uncertainties.
    Winkler-Heil R; Hofmann W; Marsh J; Birchall A
    Radiat Prot Dosimetry; 2007; 127(1-4):27-30. PubMed ID: 17623685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Respiratory deposition model of an inhaled aerosol bolus.
    Huang CW; Pei C; Huang CH
    Comput Methods Biomech Biomed Engin; 2011 Oct; 14(10):915-25. PubMed ID: 21409658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Deposition of particles in the respiratory system].
    Huchon G; Castillon du Perron M; Chrétien J
    Ann Anesthesiol Fr; 1980; 21(6):653-60. PubMed ID: 6111273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of analytical and numerical particle deposition using commercial CFD packages: impaction and sedimentation.
    Robinson RJ; Snyder P; Oldham MJ
    Inhal Toxicol; 2008 Mar; 20(5):485-97. PubMed ID: 18368619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deposition of combustion aerosols in the human respiratory tract: comparison of theoretical predictions with experimental data considering nonspherical shape.
    Hofmann W; Morawska L; Winkler-Heil R; Moustafa M
    Inhal Toxicol; 2009 Dec; 21(14):1154-64. PubMed ID: 19827973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Investigating the possibility of aerosol therapy individualization using the stochastic lung model].
    Brâzaniuc K; Sárkány Z; Copotoiu SM; Măruşteri M; Azamfirei L; Kinga B; Balásházy I
    Rev Med Chir Soc Med Nat Iasi; 2006; 110(2):295-8. PubMed ID: 17802934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs.
    Nowak N; Kakade PP; Annapragada AV
    Ann Biomed Eng; 2003 Apr; 31(4):374-90. PubMed ID: 12723679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determining the basic characteristics of aerosols suitable for studies of deposition in the respiratory tract.
    Legáth L; Naus A; Halík J
    J Hyg Epidemiol Microbiol Immunol; 1988; 32(3):287-97. PubMed ID: 3198910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling techniques for inhaled particle deposition: the state of the art.
    Hofmann W
    J Aerosol Med; 1996; 9(3):369-88. PubMed ID: 10163662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: Theory and model validation.
    Kolanjiyil AV; Kleinstreuer C
    Comput Biol Med; 2016 Dec; 79():193-204. PubMed ID: 27810625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung.
    Koullapis PG; Hofemeier P; Sznitman J; Kassinos SC
    Eur J Pharm Sci; 2018 Feb; 113():132-144. PubMed ID: 28917963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling particle deposition in the Balb/c mouse respiratory tract.
    Winkler-Heil R; Hofmann W
    Inhal Toxicol; 2016; 28(4):180-91. PubMed ID: 26986953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predictions of inter- and intra-lobar deposition patterns of inhaled particles in a five-lobe lung model.
    Winkler-Heil R; Hussain M; Hofmann W
    Inhal Toxicol; 2021 Feb; 33(3):96-112. PubMed ID: 33821744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using helium-oxygen to improve regional deposition of inhaled particles: mechanical principles.
    Katz I; Pichelin M; Montesantos S; Majoral C; Martin A; Conway J; Fleming J; Venegas J; Greenblatt E; Caillibotte G
    J Aerosol Med Pulm Drug Deliv; 2014 Apr; 27(2):71-80. PubMed ID: 24383961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mice-to-men comparison of inhaled drug-aerosol deposition and clearance.
    Kolanjiyil AV; Kleinstreuer C; Kleinstreuer NC; Pham W; Sadikot RT
    Respir Physiol Neurobiol; 2019 Feb; 260():82-94. PubMed ID: 30445230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanotubes in the human respiratory tract - Deposition modeling.
    Sturm R
    Z Med Phys; 2015 Jun; 25(2):135-45. PubMed ID: 25172831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Breathing resistance and ultrafine particle deposition in nasal-laryngeal airways of a newborn, an infant, a child, and an adult.
    Xi J; Berlinski A; Zhou Y; Greenberg B; Ou X
    Ann Biomed Eng; 2012 Dec; 40(12):2579-95. PubMed ID: 22660850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.