These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22104615)

  • 1. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water.
    Hwang IH; Aoyama H; Matsuto T; Nakagishi T; Matsuo T
    Waste Manag; 2012 Mar; 32(3):410-6. PubMed ID: 22104615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling.
    Hwang IH; Matsuto T; Tanaka N; Sasaki Y; Tanaami K
    Waste Manag; 2007; 27(9):1155-66. PubMed ID: 16920347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-soluble characteristics of chlorine in char derived from municipal solid wastes.
    Hwang IH; Matsuto T; Tanaka N
    Waste Manag; 2006; 26(6):571-9. PubMed ID: 16026975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorine characterization and thermal behavior in MSW and RDF.
    Ma W; Hoffmann G; Schirmer M; Chen G; Rotter VS
    J Hazard Mater; 2010 Jun; 178(1-3):489-98. PubMed ID: 20171781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the quality of waste-derived char by removing ash.
    Hwang IH; Nakajima D; Matsuto T; Sugimoto T
    Waste Manag; 2008; 28(2):424-34. PubMed ID: 17317141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combustible and incombustible speciation of Cl and S in various components of municipal solid waste.
    Watanabe N; Yamamoto O; Sakai M; Fukuyama J
    Waste Manag; 2004; 24(6):623-32. PubMed ID: 15219921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pretreatment of automobile shredder residue (ASR) for fuel utilization.
    Hwang IH; Yokono S; Matsuto T
    Chemosphere; 2008 Mar; 71(5):879-85. PubMed ID: 18166213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery.
    Shao LM; Ma ZH; Zhang H; Zhang DQ; He PJ
    Waste Manag; 2010 Jul; 30(7):1165-70. PubMed ID: 20106649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis of municipal plastic wastes II: Influence of raw material composition under catalytic conditions.
    López A; de Marco I; Caballero BM; Laresgoiti MF; Adrados A; Torres A
    Waste Manag; 2011; 31(9-10):1973-83. PubMed ID: 21689920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of mixed organic-plastic municipal solid waste as renewable solid fuel employing wet torrefaction.
    Triyono B; Prawisudha P; Aziz M; Mardiyati ; Pasek AD; Yoshikawa K
    Waste Manag; 2019 Jul; 95():1-9. PubMed ID: 31351594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification and comparison of municipal solid waste based on thermochemical characteristics.
    Zhou H; Meng A; Long Y; Li Q; Zhang Y
    J Air Waste Manag Assoc; 2014 May; 64(5):597-616. PubMed ID: 24941708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and thermochemical characterization of rice husk char as a potential biomass energy source.
    Maiti S; Dey S; Purakayastha S; Ghosh B
    Bioresour Technol; 2006 Nov; 97(16):2065-70. PubMed ID: 16298126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Kärki J
    Waste Manag Res; 2015 Feb; 33(2):146-56. PubMed ID: 25568089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Migration characteristics of chlorine during pyrolysis of municipal solid waste pellets.
    Gao P; Hu Z; Sheng Y; Pan W; Tang L; Chen Y; Chen X; Wang F
    Waste Manag; 2023 Dec; 172():208-215. PubMed ID: 37924596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change in MSW characteristics under recent management strategies in Taiwan.
    Chang YM; Liu CC; Hung CY; Hu A; Chen SS
    Waste Manag; 2008 Dec; 28(12):2443-55. PubMed ID: 18164952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow analysis of metals in a municipal solid waste management system.
    Jung CH; Matsuto T; Tanaka N
    Waste Manag; 2006; 26(12):1337-48. PubMed ID: 16439105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation.
    Pala M; Kantarli IC; Buyukisik HB; Yanik J
    Bioresour Technol; 2014 Jun; 161():255-62. PubMed ID: 24709539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis.
    Sadhukhan J; Ng KS; Martinez-Hernandez E
    Bioresour Technol; 2016 Sep; 215():131-143. PubMed ID: 27085988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Char from the co-pyrolysis of Eucalyptus wood and low-density polyethylene for use as high-quality fuel: Influence of process parameters.
    Samal B; Vanapalli KR; Dubey BK; Bhattacharya J; Chandra S; Medha I
    Sci Total Environ; 2021 Nov; 794():148723. PubMed ID: 34217075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.