These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 22104761)

  • 21. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain.
    Stirman JN; Smith IT; Kudenov MW; Smith SL
    Nat Biotechnol; 2016 Aug; 34(8):857-62. PubMed ID: 27347754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetically Encoded Protein Sensors of Membrane Potential.
    Storace D; Rad MS; Han Z; Jin L; Cohen LB; Hughes T; Baker BJ; Sung U
    Adv Exp Med Biol; 2015; 859():493-509. PubMed ID: 26238066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical recording of neuronal spiking activity from unbiased populations of neurons with high spike detection efficiency and high temporal precision.
    Ranganathan GN; Koester HJ
    J Neurophysiol; 2010 Sep; 104(3):1812-24. PubMed ID: 20610791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetically encoded voltage indicators for large scale cortical imaging come of age.
    Knöpfel T; Gallero-Salas Y; Song C
    Curr Opin Chem Biol; 2015 Aug; 27():75-83. PubMed ID: 26115448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voltage-sensitive dye imaging: Technique review and models.
    Chemla S; Chavane F
    J Physiol Paris; 2010; 104(1-2):40-50. PubMed ID: 19909809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetically Encoded Voltage Indicators: Opportunities and Challenges.
    Yang HH; St-Pierre F
    J Neurosci; 2016 Sep; 36(39):9977-89. PubMed ID: 27683896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light-induced effects of a fluorescent voltage-sensitive dye on neuronal activity in the crab stomatogastric ganglion.
    Stein W; Andras P
    J Neurosci Methods; 2010 May; 188(2):290-4. PubMed ID: 20226813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An artery-specific fluorescent dye for studying neurovascular coupling.
    Shen Z; Lu Z; Chhatbar PY; O'Herron P; Kara P
    Nat Methods; 2012 Jan; 9(3):273-6. PubMed ID: 22266543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications.
    Wang J; Wagner F; Borton DA; Zhang J; Ozden I; Burwell RD; Nurmikko AV; van Wagenen R; Diester I; Deisseroth K
    J Neural Eng; 2012 Feb; 9(1):016001. PubMed ID: 22156042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo calcium imaging from genetically specified target cells in mouse cerebellum.
    Díez-García J; Akemann W; Knöpfel T
    Neuroimage; 2007 Feb; 34(3):859-69. PubMed ID: 17161628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues.
    Kim HM; Cho BR
    Acc Chem Res; 2009 Jul; 42(7):863-72. PubMed ID: 19334716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Random-access scanning microscopy for 3D imaging in awake behaving animals.
    Nadella KM; Roš H; Baragli C; Griffiths VA; Konstantinou G; Koimtzis T; Evans GJ; Kirkby PA; Silver RA
    Nat Methods; 2016 Dec; 13(12):1001-1004. PubMed ID: 27749836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-photon photostimulation and imaging of neural circuits.
    Nikolenko V; Poskanzer KE; Yuste R
    Nat Methods; 2007 Nov; 4(11):943-50. PubMed ID: 17965719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent progress in voltage-sensitive dye imaging for neuroscience.
    Tsytsarev V; Liao LD; Kong KV; Liu YH; Erzurumlu RS; Olivo M; Thakor NV
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4733-44. PubMed ID: 24757943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo.
    Garaschuk O; Milos RI; Konnerth A
    Nat Protoc; 2006; 1(1):380-6. PubMed ID: 17406260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small molecule fluorescent voltage indicators for studying membrane potential.
    Miller EW
    Curr Opin Chem Biol; 2016 Aug; 33():74-80. PubMed ID: 27318561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical monitoring of neuronal activity at high frame rate with a digital random-access multiphoton (RAMP) microscope.
    Otsu Y; Bormuth V; Wong J; Mathieu B; Dugué GP; Feltz A; Dieudonné S
    J Neurosci Methods; 2008 Aug; 173(2):259-70. PubMed ID: 18634822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Voltage imaging to understand connections and functions of neuronal circuits.
    Antic SD; Empson RM; Knöpfel T
    J Neurophysiol; 2016 Jul; 116(1):135-52. PubMed ID: 27075539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of receptive field size from higher harmonics in visuotopic mapping using continuous stimulation optical imaging.
    Vanni MP; Provost J; Lesage F; Casanova C
    J Neurosci Methods; 2010 May; 189(1):138-50. PubMed ID: 20346978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amphetamine elicited potential changes in vertebrate and invertebrate central neurons.
    Tsai MC; Chen YH; Huang SS
    Acta Biol Hung; 2000; 51(2-4):275-86. PubMed ID: 11034152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.