BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 22105075)

  • 21. Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells.
    Mehmeti I; Lortz S; Elsner M; Lenzen S
    J Biol Chem; 2014 Sep; 289(39):26904-26913. PubMed ID: 25122762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and characterization of GmPDIL7, a soybean ER membrane-bound protein disulfide isomerase family protein.
    Okuda A; Matsusaki M; Masuda T; Urade R
    FEBS J; 2017 Feb; 284(3):414-428. PubMed ID: 27960051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide-isomerase.
    Takemoto H; Yoshimori T; Yamamoto A; Miyata Y; Yahara I; Inoue K; Tashiro Y
    Arch Biochem Biophys; 1992 Jul; 296(1):129-36. PubMed ID: 1318687
    [TBL] [Abstract][Full Text] [Related]  

  • 24. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis.
    Fang J; Liu M; Zhang X; Sakamoto T; Taatjes DJ; Jena BP; Sun F; Woods J; Bryson T; Kowluru A; Zhang K; Chen X
    Mol Endocrinol; 2015 Aug; 29(8):1156-69. PubMed ID: 26083833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. IRE1-XBP1 pathway regulates oxidative proinsulin folding in pancreatic β cells.
    Tsuchiya Y; Saito M; Kadokura H; Miyazaki JI; Tashiro F; Imagawa Y; Iwawaki T; Kohno K
    J Cell Biol; 2018 Apr; 217(4):1287-1301. PubMed ID: 29507125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic activity and chaperone function of human protein-disulfide isomerase are required for the efficient refolding of proinsulin.
    Winter J; Klappa P; Freedman RB; Lilie H; Rudolph R
    J Biol Chem; 2002 Jan; 277(1):310-7. PubMed ID: 11694508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endoplasmic reticulum-dependent redox reactions control endoplasmic reticulum-associated degradation and pathogen entry.
    Walczak CP; Bernardi KM; Tsai B
    Antioxid Redox Signal; 2012 Apr; 16(8):809-18. PubMed ID: 22142231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proinsulin misfolding is an early event in the progression to type 2 diabetes.
    Arunagiri A; Haataja L; Pottekat A; Pamenan F; Kim S; Zeltser LM; Paton AW; Paton JC; Tsai B; Itkin-Ansari P; Kaufman RJ; Liu M; Arvan P
    Elife; 2019 Jun; 8():. PubMed ID: 31184302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a novel saturable endoplasmic reticulum localization mechanism mediated by the C-terminus of a Dictyostelium protein disulfide isomerase.
    Monnat J; Neuhaus EM; Pop MS; Ferrari DM; Kramer B; Soldati T
    Mol Biol Cell; 2000 Oct; 11(10):3469-84. PubMed ID: 11029049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biochemical basis of oxidative protein folding in the endoplasmic reticulum.
    Tu BP; Ho-Schleyer SC; Travers KJ; Weissman JS
    Science; 2000 Nov; 290(5496):1571-4. PubMed ID: 11090354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SDF2L1 interacts with the ER-associated degradation machinery and retards the degradation of mutant proinsulin in pancreatic β-cells.
    Tiwari A; Schuiki I; Zhang L; Allister EM; Wheeler MB; Volchuk A
    J Cell Sci; 2013 May; 126(Pt 9):1962-8. PubMed ID: 23444373
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological behaviors of mutant proinsulin contribute to the phenotypic spectrum of diabetes associated with insulin gene mutations.
    Wang H; Saint-Martin C; Xu J; Ding L; Wang R; Feng W; Liu M; Shu H; Fan Z; Haataja L; Arvan P; Bellanné-Chantelot C; Cui J; Huang Y
    Mol Cell Endocrinol; 2020 Dec; 518():111025. PubMed ID: 32916194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. UGGT1 retains proinsulin in the endoplasmic reticulum in an arginine dependent manner.
    Cho J; Hiramoto M; Masaike Y; Sakamoto S; Imai Y; Imai Y; Handa H; Imai T
    Biochem Biophys Res Commun; 2020 Jun; 527(3):668-675. PubMed ID: 32423812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation.
    Kulp MS; Frickel EM; Ellgaard L; Weissman JS
    J Biol Chem; 2006 Jan; 281(2):876-84. PubMed ID: 16368681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential cooperative enzymatic activities of protein disulfide isomerase family in protein folding.
    Satoh M; Shimada A; Kashiwai A; Saga S; Hosokawa M
    Cell Stress Chaperones; 2005; 10(3):211-20. PubMed ID: 16184766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular bases of cyclic and specific disulfide interchange between human ERO1alpha protein and protein-disulfide isomerase (PDI).
    Masui S; Vavassori S; Fagioli C; Sitia R; Inaba K
    J Biol Chem; 2011 May; 286(18):16261-71. PubMed ID: 21398518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proinsulin intermolecular interactions during secretory trafficking in pancreatic β cells.
    Haataja L; Snapp E; Wright J; Liu M; Hardy AB; Wheeler MB; Markwardt ML; Rizzo MA; Arvan P
    J Biol Chem; 2013 Jan; 288(3):1896-906. PubMed ID: 23223446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Succination of Protein Disulfide Isomerase Links Mitochondrial Stress and Endoplasmic Reticulum Stress in the Adipocyte During Diabetes.
    Manuel AM; Walla MD; Faccenda A; Martin SL; Tanis RM; Piroli GG; Adam J; Kantor B; Mutus B; Townsend DM; Frizzell N
    Antioxid Redox Signal; 2017 Dec; 27(16):1281-1296. PubMed ID: 28376661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein disulfide isomerases in the endoplasmic reticulum promote anchorage-independent growth of breast cancer cells.
    Wise R; Duhachek-Muggy S; Qi Y; Zolkiewski M; Zolkiewska A
    Breast Cancer Res Treat; 2016 Jun; 157(2):241-252. PubMed ID: 27161215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding.
    Sato Y; Kojima R; Okumura M; Hagiwara M; Masui S; Maegawa K; Saiki M; Horibe T; Suzuki M; Inaba K
    Sci Rep; 2013; 3():2456. PubMed ID: 23949117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.