These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 22105643)
1. Interspecies scaling in pharmacokinetics: a novel whole-body physiologically based modeling framework to discover drug biodistribution mechanisms in vivo. Hall C; Lueshen E; Mošat' A; Linninger AA J Pharm Sci; 2012 Mar; 101(3):1221-41. PubMed ID: 22105643 [TBL] [Abstract][Full Text] [Related]
2. Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery. Lüpfert C; Reichel A Chem Biodivers; 2005 Nov; 2(11):1462-86. PubMed ID: 17191947 [TBL] [Abstract][Full Text] [Related]
3. Development of a hybrid physiologically based pharmacokinetic model with drug-specific scaling factors in rat to improve prediction of human pharmacokinetics. Sayama H; Komura H; Kogayu M; Iwaki M J Pharm Sci; 2013 Nov; 102(11):4193-204. PubMed ID: 24018828 [TBL] [Abstract][Full Text] [Related]
4. A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles. Lin Z; Monteiro-Riviere NA; Kannan R; Riviere JE Nanomedicine (Lond); 2016 Jan; 11(2):107-19. PubMed ID: 26653715 [TBL] [Abstract][Full Text] [Related]
5. Interspecies and in vitro-in vivo scaling for quantitative modeling of whole-body drug pharmacokinetics in patients: Application to the anticancer drug oxaliplatin. Catozzi S; Hill R; Li XM; Dulong S; Collard E; Ballesta A CPT Pharmacometrics Syst Pharmacol; 2023 Feb; 12(2):221-235. PubMed ID: 36537068 [TBL] [Abstract][Full Text] [Related]
6. Interspecies scaling and comparisons in drug development and toxicokinetics. Ings RM Xenobiotica; 1990 Nov; 20(11):1201-31. PubMed ID: 2275215 [TBL] [Abstract][Full Text] [Related]
7. Use of in vitro data in developing a physiologically based pharmacokinetic model: Carbaryl as a case study. Yoon M; Kedderis GL; Yan GZ; Clewell HJ Toxicology; 2015 Jun; 332():52-66. PubMed ID: 24863738 [TBL] [Abstract][Full Text] [Related]
8. Species differences in distribution and prediction of human V(ss) from preclinical data. Berry LM; Li C; Zhao Z Drug Metab Dispos; 2011 Nov; 39(11):2103-16. PubMed ID: 21852367 [TBL] [Abstract][Full Text] [Related]
10. A physiologically based pharmacokinetic model for valnemulin in rats and extrapolation to pigs. Yuan LG; Luo XY; Zhu LX; Wang R; Liu YH J Vet Pharmacol Ther; 2011 Jun; 34(3):224-31. PubMed ID: 20950354 [TBL] [Abstract][Full Text] [Related]
11. Population pharmacokinetics and bayesian estimator of cyclosporine in pediatric renal transplant patients. Irtan S; Saint-Marcoux F; Rousseau A; Zhang D; Leroy V; Marquet P; Jacqz-Aigrain E Ther Drug Monit; 2007 Feb; 29(1):96-102. PubMed ID: 17304156 [TBL] [Abstract][Full Text] [Related]
12. Approaches for predicting human pharmacokinetics using interspecies pharmacokinetic scaling. Kang HE; Lee MG Arch Pharm Res; 2011 Nov; 34(11):1779-88. PubMed ID: 22139680 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic investigation of the preclinical pharmacokinetics and interspecies scaling of PF-05231023, a fibroblast growth factor 21-antibody protein conjugate. Giragossian C; Vage C; Li J; Pelletier K; Piché-Nicholas N; Rajadhyaksha M; Liras J; Logan A; Calle RA; Weng Y Drug Metab Dispos; 2015 Jun; 43(6):803-11. PubMed ID: 25805881 [TBL] [Abstract][Full Text] [Related]
14. Semi-mechanistic physiologically-based pharmacokinetic modeling of clinical glibenclamide pharmacokinetics and drug-drug-interactions. Greupink R; Schreurs M; Benne MS; Huisman MT; Russel FG Eur J Pharm Sci; 2013 Aug; 49(5):819-28. PubMed ID: 23806476 [TBL] [Abstract][Full Text] [Related]
15. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
16. Distribution of cyclosporine A in ocular tissues after topical administration of cyclosporine A cationic emulsions to pigmented rabbits. Daull P; Lallemand F; Philips B; Lambert G; Buggage R; Garrigue JS Cornea; 2013 Mar; 32(3):345-54. PubMed ID: 23023401 [TBL] [Abstract][Full Text] [Related]
17. Interspecies extrapolation in risk analysis. Travis CC Ann Ist Super Sanita; 1991; 27(4):581-93. PubMed ID: 1820730 [TBL] [Abstract][Full Text] [Related]
18. Application of the optimal design approach to improve a pretransplant drug dose finding design for ciclosporin. Hennig S; Nyberg J; Fanta S; Backman JT; Hoppu K; Hooker AC; Karlsson MO J Clin Pharmacol; 2012 Mar; 52(3):347-60. PubMed ID: 21543664 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of organic anion transporting polypeptide-mediated hepatic uptake is the major determinant in the pharmacokinetic interaction between bosentan and cyclosporin A in the rat. Treiber A; Schneiter R; Delahaye S; Clozel M J Pharmacol Exp Ther; 2004 Mar; 308(3):1121-9. PubMed ID: 14617681 [TBL] [Abstract][Full Text] [Related]
20. Pharmacokinetic drug interaction between cyclosporine and imatinib in bone marrow transplant children and model-based reappraisal of imatinib drug interaction profile. Bleyzac N; Kebaili K; Mialou V; Bertrand Y; Goutelle S Ther Drug Monit; 2014 Dec; 36(6):724-9. PubMed ID: 24739665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]