BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 22105777)

  • 21. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression.
    Chen J
    Cold Spring Harb Perspect Med; 2016 Mar; 6(3):a026104. PubMed ID: 26931810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glial Na(+) -dependent ion transporters in pathophysiological conditions.
    Boscia F; Begum G; Pignataro G; Sirabella R; Cuomo O; Casamassa A; Sun D; Annunziato L
    Glia; 2016 Oct; 64(10):1677-97. PubMed ID: 27458821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-cell-autonomous actions of α-synuclein: Implications in glial synucleinopathies.
    Lim S; Kim HJ; Kim DK; Lee SJ
    Prog Neurobiol; 2018 Oct; 169():158-171. PubMed ID: 30173732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis.
    Wan C; Ma X; Shi S; Zhao J; Nie X; Han J; Xiao J; Wang X; Jiang S; Jiang J
    Toxicol Appl Pharmacol; 2014 Dec; 281(3):294-302. PubMed ID: 25448048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of DAPK1 in neuronal cell death, survival and diseases in the nervous system.
    Sulaiman Alsaadi M
    Int J Dev Neurosci; 2019 May; 74():11-17. PubMed ID: 30763607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. p53 pro-oxidant activity in the central nervous system: implication in aging and neurodegenerative diseases.
    Chatoo W; Abdouh M; Bernier G
    Antioxid Redox Signal; 2011 Sep; 15(6):1729-37. PubMed ID: 20849375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct spatial and temporal activation of caspase pathways in neurons and glial cells after excitotoxic damage to the immature rat brain.
    Villapol S; Acarin L; Faiz M; Castellano B; Gonzalez B
    J Neurosci Res; 2007 Dec; 85(16):3545-56. PubMed ID: 17668855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Localization of p53 in the Crayfish Mechanoreceptor Neurons and Its Role in Axotomy-Induced Death of Satellite Glial Cells Remote from the Axon Transection Site.
    Rodkin S; Khaitin A; Pitinova M; Dzreyan V; Guzenko V; Rudkovskii M; Sharifulina S; Uzdensky A
    J Mol Neurosci; 2020 Apr; 70(4):532-541. PubMed ID: 31823284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibiting p53 pathways in microglia attenuates microglial-evoked neurotoxicity following exposure to Alzheimer peptides.
    Davenport CM; Sevastou IG; Hooper C; Pocock JM
    J Neurochem; 2010 Jan; 112(2):552-63. PubMed ID: 19895660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AKR1B10, a transcriptional target of p53, is downregulated in colorectal cancers associated with poor prognosis.
    Ohashi T; Idogawa M; Sasaki Y; Suzuki H; Tokino T
    Mol Cancer Res; 2013 Dec; 11(12):1554-63. PubMed ID: 24140838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders.
    Jha MK; Lee WH; Suk K
    Biochem Pharmacol; 2016 Mar; 103():1-16. PubMed ID: 26556658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cooperative roles of c-Abl and Cdk5 in regulation of p53 in response to oxidative stress.
    Lee JH; Jeong MW; Kim W; Choi YH; Kim KT
    J Biol Chem; 2008 Jul; 283(28):19826-35. PubMed ID: 18490454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FGF1 protects neuroblastoma SH-SY5Y cells from p53-dependent apoptosis through an intracrine pathway regulated by FGF1 phosphorylation.
    Pirou C; Montazer-Torbati F; Jah N; Delmas E; Lasbleiz C; Mignotte B; Renaud F
    Cell Death Dis; 2017 Aug; 8(8):e3023. PubMed ID: 29048426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PERP-ing into diverse mechanisms of cancer pathogenesis: Regulation and role of the p53/p63 effector PERP.
    Roberts O; Paraoan L
    Biochim Biophys Acta Rev Cancer; 2020 Aug; 1874(1):188393. PubMed ID: 32679166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. p19(ARF) is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumor suppression in vivo.
    Tolbert D; Lu X; Yin C; Tantama M; Van Dyke T
    Mol Cell Biol; 2002 Jan; 22(1):370-7. PubMed ID: 11739748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ceramide Signaling and p53 Pathways.
    Jeffries KA; Krupenko NI
    Adv Cancer Res; 2018; 140():191-215. PubMed ID: 30060809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The p53 tumor suppressor protein is a critical regulator of hematopoietic stem cell behavior.
    Liu Y; Elf SE; Asai T; Miyata Y; Liu Y; Sashida G; Huang G; Di Giandomenico S; Koff A; Nimer SD
    Cell Cycle; 2009 Oct; 8(19):3120-4. PubMed ID: 19755852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a lipid peroxidation product as a potential trigger of the p53 pathway.
    Shibata T; Iio K; Kawai Y; Shibata N; Kawaguchi M; Toi S; Kobayashi M; Kobayashi M; Yamamoto K; Uchida K
    J Biol Chem; 2006 Jan; 281(2):1196-204. PubMed ID: 16251187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. P53 mutations in colorectal cancer - molecular pathogenesis and pharmacological reactivation.
    Li XL; Zhou J; Chen ZR; Chng WJ
    World J Gastroenterol; 2015 Jan; 21(1):84-93. PubMed ID: 25574081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peroxiredoxin 5 Silencing Sensitizes Dopaminergic Neuronal Cells to Rotenone via DNA Damage-Triggered ATM/p53/PUMA Signaling-Mediated Apoptosis.
    Wang MJ; Huang HY; Chiu TL; Chang HF; Wu HR
    Cells; 2019 Dec; 9(1):. PubMed ID: 31861721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.