These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

660 related articles for article (PubMed ID: 22105780)

  • 21. Preparation of cell-encapsulation devices in confined microenvironment.
    Mazzitelli S; Capretto L; Quinci F; Piva R; Nastruzzi C
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1533-55. PubMed ID: 23933618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Important contribution and necessity of stem cells scaffolds for regenerative medicine and the therapeutic applications].
    Tabata Y
    Nihon Rinsho; 2008 May; 66(5):881-6. PubMed ID: 18464505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Throughput Fabrication and Modular Assembly of 3D Heterogeneous Microscale Tissues.
    Yang W; Yu H; Li G; Wang Y; Liu L
    Small; 2017 Feb; 13(5):. PubMed ID: 27862956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications.
    Mihaila SM; Popa EG; Reis RL; Marques AP; Gomes ME
    Biomacromolecules; 2014 Aug; 15(8):2849-60. PubMed ID: 24963559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell-laden microengineered gelatin methacrylate hydrogels.
    Nichol JW; Koshy ST; Bae H; Hwang CM; Yamanlar S; Khademhosseini A
    Biomaterials; 2010 Jul; 31(21):5536-44. PubMed ID: 20417964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering.
    Billiet T; Vandenhaute M; Schelfhout J; Van Vlierberghe S; Dubruel P
    Biomaterials; 2012 Sep; 33(26):6020-41. PubMed ID: 22681979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual Crosslinked Methacrylated Alginate Hydrogel Micron Fibers and Tissue Constructs for Cell Biology.
    Gao Y; Jin X
    Mar Drugs; 2019 Sep; 17(10):. PubMed ID: 31569386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microengineered PEG hydrogels: 3D scaffolds for guided cell growth.
    Schulte VA; Alves DF; Dalton PP; Moeller M; Lensen MC; Mela P
    Macromol Biosci; 2013 May; 13(5):562-72. PubMed ID: 23420664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gel integration for microfluidic applications.
    Zhang X; Li L; Luo C
    Lab Chip; 2016 May; 16(10):1757-76. PubMed ID: 27086944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in skeletal tissue engineering with hydrogels.
    Elisseeff J; Puleo C; Yang F; Sharma B
    Orthod Craniofac Res; 2005 Aug; 8(3):150-61. PubMed ID: 16022717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell delivery systems using alginate--carrageenan hydrogel beads and fibers for regenerative medicine applications.
    Popa EG; Gomes ME; Reis RL
    Biomacromolecules; 2011 Nov; 12(11):3952-61. PubMed ID: 21970513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micromolding of shape-controlled, harvestable cell-laden hydrogels.
    Yeh J; Ling Y; Karp JM; Gantz J; Chandawarkar A; Eng G; Blumling J; Langer R; Khademhosseini A
    Biomaterials; 2006 Nov; 27(31):5391-8. PubMed ID: 16828863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrogels for biomedical applications.
    Cabral J; Moratti SC
    Future Med Chem; 2011 Nov; 3(15):1877-88. PubMed ID: 22023032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds.
    Tian Y; Wang J; Wang L
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29219-29226. PubMed ID: 30113807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering.
    Kim J; Kim IS; Cho TH; Kim HC; Yoon SJ; Choi J; Park Y; Sun K; Hwang SJ
    J Biomed Mater Res A; 2010 Dec; 95(3):673-81. PubMed ID: 20725983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering.
    Montembault A; Tahiri K; Korwin-Zmijowska C; Chevalier X; Corvol MT; Domard A
    Biochimie; 2006 May; 88(5):551-64. PubMed ID: 16626850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogels for protein delivery in tissue engineering.
    Censi R; Di Martino P; Vermonden T; Hennink WE
    J Control Release; 2012 Jul; 161(2):680-92. PubMed ID: 22421425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scalable and Automated Fabrication of Conductive Tough-Hydrogel Microfibers with Ultrastretchability, 3D Printability, and Stress Sensitivity.
    Wei S; Qu G; Luo G; Huang Y; Zhang H; Zhou X; Wang L; Liu Z; Kong T
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11204-11212. PubMed ID: 29504395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradable hydrogels based on novel photopolymerizable guar gum-methacrylate macromonomers for in situ fabrication of tissue engineering scaffolds.
    Tiwari A; Grailer JJ; Pilla S; Steeber DA; Gong S
    Acta Biomater; 2009 Nov; 5(9):3441-52. PubMed ID: 19505599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.