These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

665 related articles for article (PubMed ID: 22105780)

  • 41. Hydrogels and microtechnologies for engineering the cellular microenvironment.
    Gauvin R; Parenteau-Bareil R; Dokmeci MR; Merryman WD; Khademhosseini A
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(3):235-46. PubMed ID: 22144036
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications.
    Jia L; Han F; Yang H; Turnbull G; Wang J; Clarke J; Shu W; Guo M; Li B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900435. PubMed ID: 31081247
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation.
    Wu DQ; Wang T; Lu B; Xu XD; Cheng SX; Jiang XJ; Zhang XZ; Zhuo RX
    Langmuir; 2008 Sep; 24(18):10306-12. PubMed ID: 18680318
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology.
    Wang CC; Yang KC; Lin KH; Liu HC; Lin FH
    Biomaterials; 2011 Oct; 32(29):7118-26. PubMed ID: 21724248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Degradation regulated bioactive hydrogel as the bioink with desirable moldability for microfluidic biofabrication.
    Liu X; Zuo Y; Sun J; Guo Z; Fan H; Zhang X
    Carbohydr Polym; 2017 Dec; 178():8-17. PubMed ID: 29050618
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities.
    Andersson H; van den Berg A
    Lab Chip; 2004 Apr; 4(2):98-103. PubMed ID: 15052347
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineered 3D tissue models for cell-laden microfluidic channels.
    Song YS; Lin RL; Montesano G; Durmus NG; Lee G; Yoo SS; Kayaalp E; Haeggström E; Khademhosseini A; Demirci U
    Anal Bioanal Chem; 2009 Sep; 395(1):185-93. PubMed ID: 19629459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Droplet Microfluidics Powered Hydrogel Microparticles for Stem Cell-Mediated Biomedical Applications.
    Zheng F; Tian R; Lu H; Liang X; Shafiq M; Uchida S; Chen H; Ma M
    Small; 2024 Oct; 20(42):e2401400. PubMed ID: 38881184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Matrices and scaffolds for protein delivery in tissue engineering.
    Tessmar JK; Göpferich AM
    Adv Drug Deliv Rev; 2007 May; 59(4-5):274-91. PubMed ID: 17544542
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications.
    Leclerc E; Furukawa KS; Miyata F; Sakai Y; Ushida T; Fujii T
    Biomaterials; 2004 Aug; 25(19):4683-90. PubMed ID: 15120514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogel-based reconfigurable components for microfluidic devices.
    Kim D; Beebe DJ
    Lab Chip; 2007 Feb; 7(2):193-8. PubMed ID: 17268621
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biodegradable, photocrosslinked alginate hydrogels with independently tailorable physical properties and cell adhesivity.
    Jeon O; Powell C; Ahmed SM; Alsberg E
    Tissue Eng Part A; 2010 Sep; 16(9):2915-25. PubMed ID: 20486798
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Directed assembly of cell-laden hydrogels for engineering functional tissues.
    Kachouie NN; Du Y; Bae H; Khabiry M; Ahari AF; Zamanian B; Fukuda J; Khademhosseini A
    Organogenesis; 2010; 6(4):234-44. PubMed ID: 21220962
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two-photon lithography in the future of cell-based therapeutics and regenerative medicine: a review of techniques for hydrogel patterning and controlled release.
    Kasko AM; Wong DY
    Future Med Chem; 2010 Nov; 2(11):1669-80. PubMed ID: 21428838
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Epoxy-amine synthesised hydrogel scaffolds for soft-tissue engineering.
    Hamid ZA; Blencowe A; Ozcelik B; Palmer JA; Stevens GW; Abberton KM; Morrison WA; Penington AJ; Qiao GG
    Biomaterials; 2010 Sep; 31(25):6454-67. PubMed ID: 20542558
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An in vitro study of two GAG-like marine polysaccharides incorporated into injectable hydrogels for bone and cartilage tissue engineering.
    Rederstorff E; Weiss P; Sourice S; Pilet P; Xie F; Sinquin C; Colliec-Jouault S; Guicheux J; Laïb S
    Acta Biomater; 2011 May; 7(5):2119-30. PubMed ID: 21256989
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro.
    Liu J; Song H; Zhang L; Xu H; Zhao X
    Macromol Biosci; 2010 Oct; 10(10):1164-70. PubMed ID: 20552605
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Peptide-modified "smart" hydrogels and genetically engineered stem cells for skeletal tissue engineering.
    Garty S; Kimelman-Bleich N; Hayouka Z; Cohn D; Friedler A; Pelled G; Gazit D
    Biomacromolecules; 2010 Jun; 11(6):1516-26. PubMed ID: 20462241
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic Biomaterials.
    Tien J; Dance YW
    Adv Healthc Mater; 2021 Feb; 10(4):e2001028. PubMed ID: 32893494
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plant virus incorporated hydrogels as scaffolds for tissue engineering possess low immunogenicity in vivo.
    Luckanagul JA; Lee LA; You S; Yang X; Wang Q
    J Biomed Mater Res A; 2015 Mar; 103(3):887-95. PubMed ID: 24829052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.