These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 22105863)

  • 1. Composition and bandgap-graded semiconductor alloy nanowires.
    Zhuang X; Ning CZ; Pan A
    Adv Mater; 2012 Jan; 24(1):13-33. PubMed ID: 22105863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bandgap broadly tunable GaZnSeAs alloy nanowires.
    Wang Y; Xu J; Ren P; Zhang Q; Zhuang X; Zhu X; Wan Q; Zhou H; Hu W; Pan A
    Phys Chem Chem Phys; 2013 Feb; 15(8):2912-6. PubMed ID: 23340858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability.
    Fu Y; Zhu H; Schrader AW; Liang D; Ding Q; Joshi P; Hwang L; Zhu XY; Jin S
    Nano Lett; 2016 Feb; 16(2):1000-8. PubMed ID: 26727024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate.
    Pan A; Liu R; Sun M; Ning CZ
    ACS Nano; 2010 Feb; 4(2):671-80. PubMed ID: 20073535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable bandgap and isotropic light absorption from bismuth-containing GaAs core-shell and multi-shell nanowires.
    Usman M
    Nanoscale; 2020 Oct; 12(40):20973-20983. PubMed ID: 33053001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Color-Tunable Light-Emitting Devices Based on Compositionally Graded Monolayer Transition Metal Dichalcogenide Alloys.
    Pu J; Ou H; Yamada T; Wada N; Naito H; Ogura H; Endo T; Liu Z; Irisawa T; Yanagi K; Nakanishi Y; Gao Y; Maruyama M; Okada S; Shinokita K; Matsuda K; Miyata Y; Takenobu T
    Adv Mater; 2022 Nov; 34(44):e2203250. PubMed ID: 36086880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation.
    Liu Z; Yin L; Ning H; Yang Z; Tong L; Ning CZ
    Nano Lett; 2013 Oct; 13(10):4945-50. PubMed ID: 24016196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-wire bandgap engineering via a magnetic-pulled CVD approach and optoelectronic applications of one-dimensional nanostructures.
    Shen X; Li P; Guo P; Yu KM
    Nanotechnology; 2022 Aug; 33(43):. PubMed ID: 35816940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.
    Caselli D; Liu Z; Shelhammer D; Ning CZ
    Nano Lett; 2014 Oct; 14(10):5772-9. PubMed ID: 25203692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composition-tunable alloyed semiconductor nanocrystals.
    Regulacio MD; Han MY
    Acc Chem Res; 2010 May; 43(5):621-30. PubMed ID: 20214405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices.
    Sarwar AT; Carnevale SD; Yang F; Kent TF; Jamison JJ; McComb DW; Myers RC
    Small; 2015 Oct; 11(40):5402-8. PubMed ID: 26307552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires.
    Xu J; Zhuang X; Guo P; Zhang Q; Huang W; Wan Q; Hu W; Wang X; Zhu X; Fan C; Yang Z; Tong L; Duan X; Pan A
    Nano Lett; 2012 Sep; 12(9):5003-7. PubMed ID: 22862798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved Hall effect measurement in a single semiconductor nanowire.
    Storm K; Halvardsson F; Heurlin M; Lindgren D; Gustafsson A; Wu PM; Monemar B; Samuelson L
    Nat Nanotechnol; 2012 Nov; 7(11):718-22. PubMed ID: 23103932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum.
    Pan A; Liu R; Sun M; Ning CZ
    J Am Chem Soc; 2009 Jul; 131(27):9502-3. PubMed ID: 19545159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial bandgap engineering along single alloy nanowires.
    Gu F; Yang Z; Yu H; Xu J; Wang P; Tong L; Pan A
    J Am Chem Soc; 2011 Feb; 133(7):2037-9. PubMed ID: 21271702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In
    Otnes G; Heurlin M; Zeng X; Borgström MT
    Nano Lett; 2017 Feb; 17(2):702-707. PubMed ID: 28054783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GaN nanostructure-based light emitting diodes and semiconductor lasers.
    Viswanath AK
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1947-82. PubMed ID: 24749467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical assembly of multifunctional oxide-based composite nanostructures for energy and environmental applications.
    Gao PX; Shimpi P; Gao H; Liu C; Guo Y; Cai W; Liao KT; Wrobel G; Zhang Z; Ren Z; Lin HJ
    Int J Mol Sci; 2012; 13(6):7393-7423. PubMed ID: 22837702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact printing of compositionally graded CdS(x)Se(1-x) nanowire parallel arrays for tunable photodetectors.
    Takahashi T; Nichols P; Takei K; Ford AC; Jamshidi A; Wu MC; Ning CZ; Javey A
    Nanotechnology; 2012 Feb; 23(4):045201. PubMed ID: 22222254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide.
    Baugher BW; Churchill HO; Yang Y; Jarillo-Herrero P
    Nat Nanotechnol; 2014 Apr; 9(4):262-7. PubMed ID: 24608231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.