These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22105926)

  • 41. Galvanic reactions involving silver nanoparticles embedded in cation-exchange membrane.
    Kumar R; Pandey AK; Das S; Dhara S; Misra NL; Shukla R; Tyagi AK; Ramagiri SV; Bellare JR; Goswami A
    Chem Commun (Camb); 2010 Sep; 46(34):6371-3. PubMed ID: 20697656
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metal-ion induced transition from multi- to single-bilayer tubes in histidine bearing lipids and formation of monodisperse Au nanoparticles.
    Nishimura T; Matsuo T; Sakurai K
    Phys Chem Chem Phys; 2011 Sep; 13(35):15899-905. PubMed ID: 21829827
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Generation of metal photomasks by dip-pen nanolithography.
    Jang JW; Sanedrin RG; Senesi AJ; Zheng Z; Chen X; Hwang S; Huang L; Mirkin CA
    Small; 2009 Aug; 5(16):1850-3. PubMed ID: 19384884
    [No Abstract]   [Full Text] [Related]  

  • 44. Selective immobilization of oligonucleotide-modified gold nanoparticles by electrodeposition on screen-printed electrodes.
    Moreno M; Rincon E; Pérez JM; González VM; Domingo A; Dominguez E
    Biosens Bioelectron; 2009 Dec; 25(4):778-83. PubMed ID: 19783422
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fluorescence studies into the effect of plasmonic interactions on protein function.
    Nieder JB; Bittl R; Brecht M
    Angew Chem Int Ed Engl; 2010 Dec; 49(52):10217-20. PubMed ID: 21117103
    [No Abstract]   [Full Text] [Related]  

  • 46. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study.
    Si S; Mandal TK
    Chemistry; 2007; 13(11):3160-8. PubMed ID: 17245786
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Au@Ag core-shell nanoparticles: efficient all-plasmonic Fano-resonance generators.
    Peña-Rodríguez O; Pal U
    Nanoscale; 2011 Sep; 3(9):3609-12. PubMed ID: 21811742
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced two-photon emission in coupled metal nanoparticles induced by conjugated polymers.
    Guan Z; Polavarapu L; Xu QH
    Langmuir; 2010 Dec; 26(23):18020-3. PubMed ID: 21028762
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Growth of copper phthalocyanine rods on Au plasmon electrodes through micelle disruption methods.
    Chen WH; Ko WY; Chen YS; Cheng CY; Chan CM; Lin KJ
    Langmuir; 2010 Feb; 26(4):2191-5. PubMed ID: 20063868
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ferromagnetism exhibited by nanoparticles of noble metals.
    Maitra U; Das B; Kumar N; Sundaresan A; Rao CN
    Chemphyschem; 2011 Aug; 12(12):2322-7. PubMed ID: 21744458
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles.
    Shore MS; Wang J; Johnston-Peck AC; Oldenburg AL; Tracy JB
    Small; 2011 Jan; 7(2):230-4. PubMed ID: 21213387
    [No Abstract]   [Full Text] [Related]  

  • 53. Silver and gold nanoparticles in plants: sites for the reduction to metal.
    Beattie IR; Haverkamp RG
    Metallomics; 2011 Jun; 3(6):628-32. PubMed ID: 21611658
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors.
    Wu HJ; Henzie J; Lin WC; Rhodes C; Li Z; Sartorel E; Thorner J; Yang P; Groves JT
    Nat Methods; 2012 Dec; 9(12):1189-91. PubMed ID: 23085614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antibacterial behavior of transition-metals-decorated activated carbon fibers.
    Kim BJ; Park SJ
    J Colloid Interface Sci; 2008 Sep; 325(1):297-9. PubMed ID: 18556011
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carbon-bonded silver nanoparticles: alkyne-functionalized ligands for SERS imaging of mammalian cells.
    Kennedy DC; McKay CS; Tay LL; Rouleau Y; Pezacki JP
    Chem Commun (Camb); 2011 Mar; 47(11):3156-8. PubMed ID: 21279194
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Galvanostatic electrodeposition of copper nanoparticles on screen-printed carbon electrodes and their application for reducing sugars determination.
    Pérez-Fernández B; Martín-Yerga D; Costa-García A
    Talanta; 2017 Dec; 175():108-113. PubMed ID: 28841966
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrodeposition of polymer nanodots with controlled density and their reversible functionalization by polyhistidine-tag proteins.
    Bazin D; Chevalier S; Saadaoui H; Santarelli X; Larpent C; Feracci H; Faure C
    Langmuir; 2012 Oct; 28(39):13968-75. PubMed ID: 22937837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei.
    Kalishwaralal K; Deepak V; Ram Kumar Pandian S; Kottaisamy M; BarathmaniKanth S; Kartikeyan B; Gurunathan S
    Colloids Surf B Biointerfaces; 2010 Jun; 77(2):257-62. PubMed ID: 20197229
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Localized surface plasmon resonance interfaces coated with poly[3-(pyrrolyl)carboxylic acid] for histidine-tagged peptide sensing.
    Tighilt FZ; Subramanian P; Belhaneche-Bensemra N; Boukherroub R; Gabouze N; Sam S; Szunerits S
    Analyst; 2011 Oct; 136(20):4211-6. PubMed ID: 21874203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.